
0,

EECTE__

OF S OC.3 I 1989B

IMPROVED SOLUTION TECHNIQUES FOR THE
EIGENSTRUCTURE OF FRACTIONAL

ORDER SYSTEMS

THESIS

Michele Lynn Devereaux
Captain, USAF

AFIT/GAE/AA/88D-08

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

W .,-5 IMM AEW89 10 31 163
.... . -- m powmm -w fo nl lr Vw w am"nn niun uIl

• 0
AFIT/GAE/AA/88D-08

IMPROVED SOLUTION TECHNIQUES FOR TIlE
EIGENSTRUCTURE OF FRACTIONAL

ORDER SYSTEMS

* THESIS

Michele Lynn Devereaux

Captain, USAF

AFIT/GAE/AA/88D-08 D TIC
S LECTE

T3 119891S'B
*• Approved for public release; distribution unlimited

0

0 AFIT/GAE/AA/88D-08

IMPROVED SOLUTION TECHNIQUES FOR THE

EIGENSTRUCTURE OF FRACTIONAL

ORDER SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering

0b of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Aeronautical Engineering

* Michele Lynn Devereaux, B.S.

Captain, USAF

0 December, 1988

* Approved for public release; distribution unlimited

0

0

Acknowledgments

A wish to express a sincere "Thank You" to my thesis advisor, Lieutenant Colonel Ronald

Bagley, without whom this work would not have been possible. His patience and support, as well

as his faith in me, were limitless.

I would like to take this opportunity to express my deepest gratitude to my high school math

instructor, Mr. Paul Tung. He cultivated my aptitude for mathematicb, and instilled in me a deep

appreciation for mathematics.

A special debt of gratitude is owed to my new husband, Pierre, for his unfailing support (and

also for agreeing to postpone the honeymoon until after this thesis was finished).

Michele Lynn Devereaux

.0

Aocession For

OTIS GRA&I
DTTC TA.8
Unzuajoanced

01

1u t 1biitoa/ i_ ,

jv7rl lUt O -Codes

',Avta&il w/or
D~st speclea.•a

0Table of Contents

Page

Acknowledgments ii

Table of Contentsiii

List of Figures v

List of Tables vi

List of Symbols vii

Abstract ix

I. Introduction 1

II. Generalized Derivatives 3

III. Expanded Equations 6

IV. Modified Matrix Iteration Solution 11

V. Spectrum Shift Technique 15

VI. Example Problem 19

VII. Conclusions and Recommendations 23

Bibliography 24

Appendix A. Programming Flowcharts and Special Techniques 25

Appendix B. Correlation of FORTRAN Program fr P-irely Elastic Rod 30

Appendix C. FORTRAN Program for Spectrum Shift Technique 33

0

Page

Appendix D. FORTRAN Program for Modified Matrix Iteration Technique 45

Appendix E. FORTRAN Program for Eigenvalues Due to Nonzero B. 57

Appendix F. Sample Ligpnstructure for Ten-by-Ten System 69

V i a 8

Vit...v

List of Figurcs

Figure Page

1. Finite Elements of Rod6

2. Locations of A and A2 values 17

3. First Mode Shape for Damped Rod. 21

4. Second Mode Shape for Damped Rod. 21

5. Third Mode Shape for Damped Rod 22

6. Flowchart for N'DRMI 26

7. Flowchart for NONZEROB. 27

8. Flowchart for X'DRSS1 28

*9. First Mode Shape for Undamped Rod. 31

10. Second Mode Shape for Undamped Rod. 31

11. Third Mode Shape for Undamped Rod 32

0@v

List of Tables

Table Page

1. Computation Times (in CPU minutes) 19

0v

0

List of Symbols

S square matrix
]T transpose of matrix

inverse of matrix

{ } column vector

A cross-sectional area

bm parameters of viscoelastic model

[D(A)] dynamical matrix

Do[1 generalized derivative of order a

E Young's modulus

E, parameters of viscoelastic model

* F[] Fourier transform operator

{Ffs)} Laplace transform of the vector of forcing functions

i square root of negative one

[K(s)] viscoelastic stiffness matrix

[] pseudo stiffness matrix of expanded equations of motion

L[3 Laplace transform operator

L length of a rod element

[M] mass matrix

[MI pseudomass matrix of expanded equations of motion

8 Laplace parameter

{ (I)} column vector of structural displacements

{X(s)} Laplace transform of {z(t)}

0

vii

0

an paramters of viscoelastic model

k
3 r paramters of viscoelastic model

* (t) strain history

r(o) gamma function of a

A eigenvalue associated with expanded equations of motion

{0} mode shape

shift factor

uUt) stress history

* Fourier parameter and frequency

oi

0

viii

AFIT/GAE/AA/88D-08

Abstract

The structural problem of a viscoelastically damped rod is considered. A four parameter

fractional derivative viscoelastic model rather than the traditional viscous model is used to de-

scribe the stress-strain relationship. The introduction of fractional order derivatives leads to high

order matrix equations, which are cumbersome and time consuming to solve. Thus, there exists a

motivation to seek alternate solution techniques. An existing technique, modifit " matrix iteration,

is presented. and a new one, employing spec.rum shift concepts, is proposed. The spectrum shift

technique is shown to be significantly more efficient.

.0

0

ix

IMPROVED SOLUTION TECHNIQUES FOR THE

EIGENSTRUCTURE OF FRACTIONAL

0 ORDER SYSTEMS

I. Introduction

The fractional derivative viscoelastic model has its earliest roots in Nutting's observations that

fractional powers of time could model the stress relaxation phenomenon [5]. Gemant later noted

* that stiffness and damping properties of viscoelastic materials seemed porportional to fractional

powers of frequency, implying that fractional order time differentials might be used to model the

behavior [13]. Scott-Blair combined the ideas of Nutting and Gemant by proposing the use of

* fractional order time derivatives [21. Caputo applied the concept to the viscoelasic behavior of

geological strata [4]. Then he and Minardi showed that constitutive relationships employing the

fractional calculus described the mechanical properties of some metals and glasses [5]. Bagley

proposed incorporating fractional derivatives into finite element models of viscoelastically damped

structures. Since then, he and Torvik have jointly published several papers demonstrating the

feasibility and benefits of using fractional calculus. Of particular note is "A Theoretical Basis for

the Application of Fractonal Calculus to Viscoelasticity" [5], which uses molecular theory to derive

the existence of generalized derivatives. Their efforts have shown that fractional calculus is an

attractive approach to modelling viscoelastically damped structures. The resulting model requires

very few parameters and is often accurate over six decades of frequency [2].

Generalized calculus is not a new concept -- mathem'iticians have dealt with it for some time

[9:115-118]. A generalized derivative is represented in this paper as

5 0 D z(t)]

O

The generalized derivative can be defined for complex o, but only real values will be considered here.

Fractional derivatives ar- generalized derivatives with rational a. The term "fractional calculus"

implies the use of fractional derivatives.

This thesis reviews the properties of generalized derivatives and the expanded equations

of motion for a fractional order system describing a viscoelastically damped rod. The technique

proposed by Bagley to solve for the eigenstructure is presented. A more efficient method is presented

in Chapter V, along with some examples.

2

O

I. Brief Overview of Generalized Derivatives as Applied to Viscoclastic Materials

Before applying generalized derivatives to structural problems, it is necessary to understand

the properties of generalized derivatives and their use in viscoelastic theory. As will be shown,

generalized derivatives behave in much the same way as conventional derivatives. When used

to model viscoelastic materials, generalized derivatives typically provide an excellent model over a

broad range of frequencies [4]. To show how generalized derivatives can be used to model viscoelastic

materials, it is appropriate to first present the properties of generalized derivatives, especially the

Laplace and Fourier transforms. The generalized derivative is defined as [1:2]

I d f X(dr for0a< a< 1

) r(1 - a) dt (t -)a (1)

Note that this definition is only valid for a < 1. However, the definition requires only a slight

modification for a generalized derivative of order greater than one. Let in be a nonnegative integer,

0 and a defined as before. Then [1:11]

- a) dt- + ' (-)_

Although imposing in the time domain, in the Laplace (or Fourier) domain, the generalized

derivative manifests itself as a fractional power of s (or w). To calculate the Laplace transform, let

r = t - rq. Then,

Dk[z(t)] 1 d fdr 1 for 0 < . < 1 (3)
II- a) dt J0 na

Applying Leibnitz's rule,

1 x (0)

D0 [x(t)]- [(1-]1 z(t-,7)d+r(() for0<a< 1 (4)

Noting that the integral is a time convolution, and that

L ['-'] (5)r,_ (5)-

3

the Laplace transform is0(0

L[D,[x(t)]] = Is- ,sL[x(t)] - x(O)) + s_- (6)

or, more simply,

L[D'[x(t)]] = s L[x(t)] (7)

where

L[z(t)] = j x(t) e" dt (8)

Notice that for initial conditions equal to zero, the Laplace transform of a generalized derivative

of order a has the same property as the conventional derivative: the transform is sa times the

transform of the function. In fact, the generalized derivative satisfies many of the same properties

as the conventional derivative, particularly linearity and the compostion property [1:8-101

D'[y(t) + x(t)] = D'[y(t)] + D'[x(1)] (9)

Da[DO[z(t)] = D +P[x(t)] (10)

The Fourier transform is defined as

F[x(t)] - 1(t) C-"t di (11)

If 4(t) 0 for t < 0, then the Fourier transform can be written as

F[(t)] = j x(t) e- 'w dt (12)

It is easily seen that the Fourier transform of a generalized derivative is

F[Da[z(1)]] = (iw) 0 F[x(t)] (13)

In the preceding discussion, the only restriction placed on a was that it be a nonnegative

real number less than one. However, for engineering applications, an irrational number can be

approximated by a rational number. So a will now be restricted to be rational as wll Using the

*term "fractional derivative" will indicate this additional restriction.

4

0 To illustrate the use of fractional derivatives in viscoelastic theory, consider the standard

linear viscoelastic model relating stress and strain [2]
M N

Mf + ~ Et b, Eoc(t) + En d(t (14)
U~t)+Zbm dtm

_ t
rn=1 n=1

Recalling Scott-Blair's proposal, replace the conventional derivatives by derivatives of fractional

order. The result is the general form of the fractional derivative viscoelastic model [2]

M N

labelsume,(t) + bm Do,, [a(t)] = Eo0(t) + E EDO [E(t)] (15)
Mn=l n=1

A large number of materials can be modelled by replacing each sum in Equation refsum by a

single term involving a fractional derivative

a(t) + b D9[u(t)] = Eoc(t) + EID'[c(t)] (16)

Invoking the Second Law of Thermodynamics requires that [3]

Eo > 0 E1 bEo

El > 0 = (17)

b > 0

These constraints ensure nonnegative energy dissipation and nonnegative work. The stress-strain

relation in the Laplace domain is

a(s) Eo + Es' (18)
f(s) 1 + bso

This is known as the four parameter model, and has been shown to be very accurate over several

decades of frequency [4, 13, 14].

5

0aamu nmu~r nninnuummmu nu

0
III. Expanded Equations

Although the fractional derivative viscoelastic model may provide an excellent description

of a material's properties, in order for it to be useful, its application to a structure must lead

to a solvable problem. This chaper illustrates the existence of a solution by examining the finite

element model of a viscoelastically damped rod. The equations of motion are developed using the

elastic-viscoelastic correspondence principle, which states that a viscoelastic problem is equivalent

to an elastic problem with the elastic Poduli replaced by the appropriate viscoelastic moduli [7:42.

This chapter develops the finite element model of a viscoelastically damped rod, constrained at

each end. Figure 1 shows a five degree-of- freedom rod, constrained at each end, with viscoelastic

damping pads at each node. Assume the rod is uniform and purely elastic. Using standard finite

element techniques, the stiffness matrix for the elastic rod is of the form [8:300]

2 -1 0 0 0

-1 2 -1 0 0

_EA[KE1---- 0 -1 2 -1 0 (19)

0 0 -1 2 -1

0 0 0 -1 2

viscoelastic pads

X1 (",)"-\(\)\ --,(t)\\\ (\)\\ M

L rod elements

Figure 1. Finite Elements of Rod

0

where E is the Young's modulus for the material in the rod, A is the cross-sectional area, and L is

the length of one element. Assume the modulus of the viscoelastic material is

a(s) E0 Eo~Esa
E(s) = a - 1 + Es' (20)

C(s) 1 + bsaI

as derived in the previous chapter. The damping pads provide an out of phase shear stress to the

rod. The shear stress is partially elastic and partially viscous, due to the real and imaginary parts

of the modulus. As an example, let a = 1/2, b = 0, and s = iL, where w is an observed frequency

of the system. Then

E(w) = Eo+El(iw)'/2

= Eo + (w)l/ 2 Elei'/4 (21)

= (E, + (w)'/ 2 E1 cos 1) + (w)1/ 2 E1 sin

The real part represents the elastic component of the shear stress, and the imaginary part represents

the viscous component, which is ninety degrees out of phase.

The contribution to the structure's stiffness matrix due to the viscoelastic pads is

A1 /it 0 0 0 0

0 A 2 /t 2 0 0 0
G~s[Kv -Go + Gls°

G(s)[Kv] = 1 + bs 0 0 A 3 /6 0 0 (22)

0 0 0 A 4 /t 4 0

0 0 0 0 A 5/ts

where A. is the area of the pad attached to the rod at & degree of freedom and t, is the pad's thick-

ness. The ratios Ai/ti are the stiffness coefficients for the damping material at the corresponding

degree of freedom. Then the stiffness matrix for the total structure is

[K(s)] = [KE] + Go + Gjs° [K] (23)
1 + bs [

The mass matrix for the rod is [8:301-302]

7

0

4 1 0 0 0

1 4 1 0 0

pA L 4

0 1 4 1 0 (24)

0 0 1 4 1

0 0 0 1 4

where p is the density of the rod, and A and L are defined as above.

The equations of motion in the Laplace domain are

[s2 [M] + [K(s)]] {X(s)} = {F(s)} (25)

where {F(s)} is the Laplace transform of the forcing function. Setting {F(s)) = 0 yields the

homogeneous equation, form which the eigenstructure is found.

To clear the denominator in [K(s)], multiply through by (1 + bs'). Defining

[Ao] = Go[Kv] + [KE] (26)

[Aq] = GI[Kv] + b[KE] (27)

and expressing a as a ratio in lowest terms, q/m, gives

(s (2m+q)/m b[M] + s2m/m[M] + sqlm[Aq] + [Ao]) {X(s)} = (1 + bsql/){F(s)} (28)

In order to obtain an orthogonal transformation and decouple the equations of motion, cast

the equations of motion in the following format

• 1/m[M] {X(s)} + [k] {X(s)) = {F(s)} (29)

0

*[0] [0] ... [0] b[M]

[01 [0] . b[AI]

[AI]=[Aq]

[0] b[Af]) .. [Aq]

b[.AI ... [Aq] ... [0]

0 0] [0] [. 0] -b[Ml] [0]

[0] [0] ... -b[Af] .. [0]

[0] -b[M] .. [-Aq] ... [0]

-b[A! .. [-Aq] ... 10] [0]

0 0] [0] . [0] [01 [Ao]

,(2m- 1)/m {X(s)}

{2X-2)m)}=S)

a1fm {X(8)}

1 X(s)}

00

[0]

[0]

* (1 + bsl/m){F(s)}

9

0 With {F(s)} = 0, the problem is now in terms of real, square, symmetric matrices. Thus,

the eigenvalues will be distinct and either real or occur in complex conjugate pairs. Also, the

eigenvectors will be orthogonal to one another. It is a straightforward matter to decouple the

expanded equations of motion using standard techniques [1:67-68] Notice that for an n degree-of-

freedom structure, the order of the expanded equations is n(2m + q). From Equation 28, it can

be seen that there are (2m + q) branches to the problem, with n eigenvalues on each, resulting

in n(2m + q) eigenvalues. In a standard viscous formulation of the problem, only 2n eigenvalues

would be found. The additional ones are due to the use of the fractional order derivatives. For a

large structure, the higher order of the equations of motion represents a significant computational

burden. Now that the existence of the solution has been proved, it will be beneficial to consider

solution techniques that avoid solving the expanded equations of motion.

.0

0

01

0

IV. Modified Afatrix Iteration Solution

The current method of determining for the eigenstructure of the fractional order system

deveoped in the previous chapter is to use a modified matrix iteration scheme on the homogeneous

form of the original equation. Matrix iteration avoids computing and solving the characteristic

polynomial of the matrix. Unlike using a Hessenberg matrix, which requires knowing the eigenvalue

before the eigenvector can be calculated, matrix interation determines both at the same time.

Matrix iteration is typically used to find the eigenstructure of undamped systems. With

some modification, the concept can be applied to damped systems. Two different algorithms will

be needed to find all n(2m + q) modes. For convenience, the modes on a given branch will be

numbered beginning with the one corresponding to the eigenvalue with the smallest magnitude. A

mode corresponding to an eigenvalue with larger magnitude will be referred to as a hightr mode.

0 6 Lower modes are defined in the same way..0
For an undamped system, the homogeneous form of the equations of motion in the Fourier

domain is

- W 2 [M]{ + [K]{0} = 0 (30)

or

[=]--[]{ {€} (31)

To demonstrate matrix iteration, select a trial vector,{€}, and express it as a linear combination

of the eigenvectors of [K]-'[M]:

{1 = (32)

This is possible since the eigenvectors of [K]- 1 [M] span n-space. The only restriction on the ci's

is that cl 6 0. Premultiplying both sides of Equation 32 by [K]-'[M] produces

n

[K] = Z ' (33)
* i---1

0
11

0 Subsequent multiplications produce

0n ({]1MI } = Z c{, }(4
=1 '34)

Since for large k,

2k (35)

it is clear that Equation 34 converges to the lowest mode [10:124- 125]. If Equation 34 is normalized

with respect to the same element between premultiplications by [K]-'[M], the the normalization

factor reaches a constant value, equal to 1/w2 (since cl : 0), and the normalized vectors converge to

the first mode. To find higher modes, subtract off lower modes using Turner's method [6:168-269].

Letting

[D] = [K]-[I] - f ,i,{ ¢5)} {}T[M] (36)
i=1

then

[D]{~ = 1(37)

converges to the jth mode. Note that the lower modes must be normalized such that {¢,}T[AI]{} - 1.

To apply this technique to a fractional order system, let A = s1'/ . Then Equation 30 can be

written as

A2 m[M]{¢} + [K(A)]{¢} = 0 (38)

or

[K(A)]- 1 [M]{4} = - (39)

where [K(A)] is equivalent to [K(s)] in Equation 25. Each time the estimate of A is updated, [K(A)]

must be recomputed. Notice that for A2 n , there are 2m possible values of A. The different values

arise because z/2m is a multivalued function and has 2m branches. T' e value of A on the kth

branch is computed using DeMoivre's Theorem [12:22]. Using the form \
2

m = re",

A = ri1/2m cos 2kr + isin 0 (40)

0
12

S The primary branch is assigned the number "0", so k = 0, 1,2,..., 2m - 1.

Since the stiffness matrix is a function of A, to find the higher modes Equation 36 must be

modified:
j-1 1

[D(A)] = [K(A)]-'[f] - E -{ Z}{} T [AI] (41)

The quantities Ai and {,} are called pseudoeigenvalues and pseudoeigenvectors. They are com-

puted from the eigenvector problem:

[K(A)]-'[A]{$} = (42)

It is important to realize that the pseudoeigenvalues and pseudoeigenvectors are not modes

of the system. Their computation is merely an intermediate step in calculating the solutions of the

equations of motion. In computing the jth mode of the system, only the first j - 1 pseudomodes

of Equation 42 are needed. Then Equation 41 is used to converge on the jth mode of the system.

Notice that for each new guess of A, j - 1 pseudoeigenvalues and pseudoeigenvectors must be

* 0 recalculated. This repesents a significant computational burden. The next chapter proposes a

technique to reduce the amount of computation required.

Note that this technique produces 2mrn eigenvalues, but Equation 28 predicted n(2m + q)

* eigenvalues. The remaining qn of the n(2m + q) eigenvalues and eigenvectors are found using a

scheme very similar to the one above [1:80-83]. After clearing the denominator of Equation 38, it

can be written as

* A2m (1 + bAW)[M]{¢} + (1 + bAq)[KE]{¢}+ (43)

(Eo+EAM)[Kv]{¢) = 0

Writing the equation in this form allows Aq to appear explicitly in the equation, making it possible

to find the remaining roots. Notice that these additional roots only exist for b : 0.

The solution method used to find the additional roots is somewhat subtle. By defining

Q = bA 2m ¢ A2 (44)

* [K'(A)] = (1 + bAq)[KE] + (Eo + EiA1)[Kt] (45)

0
13

0 Equation 43 can be written iii the more recognizable form

= (46)

Matrix iteration is applied to this equation, with the i h estimate of A determined from

j Q - A - 1 q (47)

The kt" branch of the qth root of the quantity in brackets is used to determine the eigenvalue on

that branch.

Turner's method is again employed to find the higher modes on each branch, as in Equation 41,

with Q(A) replacing . A program which uses the above methods to comput, the additional modes

is given in Appendix D.

This chapter has shown that it is possible to find all n(2rn + q) eigenvalues and eigenvectors

without solving the expanded equations of motion. However, the technique still requires a substan-

tial amount of computation. In the next chapter, a technique is proposed which greatly reduces

the computational burden.

0

14

SV. Spectrum Shift Techrique

While the modified matrix iteration technique is effective, it is not very efficient. In this

chapter, spectrum shift methods will be combined with the matrix iteration technique. reducing

the amount of computation required. The purpose of spectrum shift is to shift the eigenvalues of

the system so that the desired eigenvalue becomes the fundamental one. Matrix iteration will then

produce the desired eigenvalue. If spectrum shift methods could be used to compute the higher

modes in the viscoelastic model, the pseudoeigenvalues and pseudoeigenvectors of the corresponding

[K(A)]-I[M] would not have to be computed. Determining the appropriate spcctrum shifts is not

easy, and requires certain precautions, which will be presented later.

The spectrum shift technique is usually used in elastic systems when a particular frequency

and corresponding mode shape are of interest. To illustrate the theory behind the spectrum shift

technique, consider again an undamped system.0
[[K] - w2 [M]] {} = 0 (48)

Picking the shift factor, p, close to the desired w? gives the shifted equations [8:330]

[[K] - p[M] - p)[M]] {4'} = 0 (49)

Letting

S[t = [K] - p[M] and .o2 w- (P0)

Then

[[] 2[M]J .] 0 or [R7-'[M]{O} = (51)j~

* Applying matrix iteration to this equation produces the mode closest to p.

0

15

0
Now consider the matrix EK(,)]- 1 1M] of the viscoelastic model. Only the ih eigenvalue and

eigenvector are desired. By letting A = si/" = (L)li r , Equations 50 and 51 can be written as

A-m= A " + p

= W001 - P[M] (52)

= 10}

Asa first guess of the appropriate shift factor for the i&' mode, the eigenvalue of [K(Ai -)]-[M]

closest to A,-1 is used. It is computed by using Turner's method. The dynamical matrix is

[D(Ax)]= [k (A,_I)]-[[M] -. €_,{_}T]

(53)

[D(A i)]{¢ --

If p,_ 1 was the shift used to find \i-1, then by Equation 52, the new shift factor is

p, p_ - (54)

0 Since the magnitude of the i'h eigenvalue must be larger than the magnitude of As- 1, if

1'"d < hu-l(55)

then A2m was in the wrong direction. The shift is recomputed as

= + A2 " (56)

Notice that matrix iteration on

= 1 (57)

will converge to the i - 1 mode if the magnitude of p, is not large enough. If this occurs, ui, is

adjusted by adding the new A2m (as in Equation 56). A program employing these techniques is

listed in Appendix C.

For undamped systems, the j" eigenvalues on all 2m branches have the same magnitude and

are evenly spaced on a circle about the origin. For lightly damped systems, the jth eigenvalues lie

16

0

o - undamped system

x - damped system

Xo XO

Z
2

X
O XO

a b

Figure 2. Locations of A and A2 values

near the those for an undamped system. This is portrayed graphically for a single degree of freedom

system with a = 1/2 in Figure 2a. Since A2 , is roughly the same magnitude for all the eigenvalues,

* Othe program in Appendix C can be modified slightly to use the A2 values on the principal branch

to calculate shifts for the other branches. This modification is valid for systems with less than a

0.01 damping ratio.

To understand the location of the A2 values in the s-plane, it is necessary to realize that the

Riemann surface for the function w = z 1/ 2 consists of two Riemann sheets, joined together at the

branch cut. Taking the branch cut along the negative real axis, the sheets can be defined by

So = {--7r < arg(z) <7r
(58)

Si = {zJlr < arg(z) < 37r}

So the eigenvalues in the first and fourth quadrants of the s1/2-plane map into the second and third

quadrants, respectively, of So. These are shown in Fiqure 2b. But the eigenvalues in the second and

third quadrants of the sI/ 2-plane map into the fourth and first quadrants, respectively, of S. To

0

17

0 see this let rei(31/4+6) represent the second quadrant eigenvalue, where 6 is an small angle. Then

arg(A2) = 37 +26 (59)

Since this angle is greater than 7r, A2 is on Si at the angle given by Equation 59.

The third quadrant eigenvalue is a little more subtle. Its angle is -(37r/4 + 6), so

37'.

arg(A2) = 23 - 26 (60)

But neither sheet contains values with this angle. When the value crossed the negative real axis

in the negative direction, its angle experienced a 47r jump discontinuity from -ir to 37r. Therefore

the angle is really

arg(A2)= 3v-2+4r= 5r -26 (61)
2 2

This angle is in the first quadrant of S1 . Notice that for undamped systems, the A2 values in S lie

directly above those in So. To map back into the sl/2-plane, the 4r must be subtracted off before

* 0 taking the square root.

For a ten degree-of-freedom system, the spectrum shift technique more than halved the com-

putation time required b) the modified matrix iteration technique. Storing the principal branch's

A2 , values reduced the computation time by another 50%. (Exact computation times are given in

the next chapter.) Computed eigenvalues were accuratc to at least five significant figures.

1

18

VI. Example Problem

To demonstrate the efficiency of this technique, a ten degree-of-freedom model was considered.

The rod was similar to the one in Figure 1, and its equations of motion had the same form. The rod

was assumed to be pure aluminum, with Butyl B252 damping pads. The values of thp Parameters

were [4](all values are in compatible mks SI units)

p = 2.71 . 103 E = 5.516. 1010

A = 0.0625 Go = 7.6. 10

Ai = 0.0625 G, = 2.95. 105 (62)

L = 0.909 b = 0.001

0 ti = 0.1

These parameters resulted in low damping, on the order of 10- 2, so it could be solved using the

modified spectrum shift technique, as well as by using modified matrix iteration or spectrum shift.

The computation times for two different pad thicknesses are given in Table 1. The solution took

longer than for the thinner pad due to the increased damping.

The damping in the system was increased by decreasing the thickness of the viscoelastic pads

0
to 0.01m. For this case, the equivalent damping ratio was 0.069, as computed from the fundamental

mode. The eigenvalues and eigcnvectors for the spectrum shift, solution are listed in Appendix E.

For completeness, the additional roots (computed using modified matrix iteration) are also included

0
in Appendix E. For the principal branch, the complex frequencies and mode shapes were found to

be

Technique t = O.1m t = 0.05m
Modified matrix iteration 0:52.11 1:14.51
Spectrum shift 0:21.78 0:32.43
Modified spectrum shift 0:12.06 0:15.15
Table 1. Computation Times (in CPU minutes)

0

19

0

-107 + 1545i

-77 + 2962i

-G6 + 4459i

-61 + 6051i

-60 + 7762i
(63)

-61 + 9606i

-64 + 11566i

-69 + 13567i

-74 + 15415i

-79 + 16779i

and

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.9 1.7 1.3 0.8 0.3 -0.3 -0.8 -1.3 -1.7 -1.9

* 0 2.7 1.8 0.7 -0.3 -0.9 -0.9 -0.3 0.7 1.8 2.7

3.2 1.4 -0.4 -1.1 -0.5 0.6 1.1 0.4 -1.4 -3.2

3.5 0.5 -1.2 -0.6 0.8 0.8 -0.6 -1.2 0.5 3.5
(64)

3.5 -0.5 -1.2 0.6 0.8 -0.8 -0.6 1.2 0.5 -3.5

3.2 -1.4 -0.4 1.1 -0.5 -0.6 1.1 -0.4 -1.4 3.2

2.7 -1.8 0.7 0.3 -0.9 0.9 -0.3 -0.7 1.8 -2.7

1.9 -1.7 1.3 -0.8 0.3 0.3 -0.8 1.3 -1.7 1.9

1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0

The first three mode shapes are plotted in Figures 3 to 5. The magnitude of the complex frequencies

for the first five modes is less than 10% higher than those for an undamped continuum model (refer

to Appendix B for a description of the continuum model), but the higher frequencies differ by up

to 20%.

0

02

040

00

x L

Figure 3. First Mode Shape for Damped Rod

.0

-2

-21

0

-2
0X L

Figure 5. Third Mode Shape for Damped Rod

The spectrum shift method complements the finite element model. With spectrum shift,

* finite element problems with viscoelastic damping can be solved much faster than with modified

matrix iteration. For a ten degree-of- freedom model, the savings was more than 50% of the CPU

time.

22

0- .. 4 -

0 VII. Conclusions and Recommendations

The spectrum shift technique is more efficient than the matrix iteration technique. The com-

putational burden does not increase as drastically with increasing degrees of freedom. For lightly

damped systems, the modified spectrum shift technique represents even greater computational

savings.

The existing program can be made more efficient by realizing that in real systems eigenvalues

and eigenvectors appear in complex pairs, and by taking advantage of the symmetry of the stiffness

and mass matrices. Also, for larger systems, it would be beneficial to examine matrix inversion

techniques that are designed to handle large matrices.

Spectrum shift techniques were attempted on the solution for the additional qn eigenvalues

due to b $ 0, but the initial results were discouraging. The eigenvalues are all close in magnitude,

which presents a challenge to the spectrum shift method. Time constraints prevented a closer look

@ 0 into this approach, but the results presented in the last chapter suggest it would be worth while to

look into this some more, especially for large m.

23

0i

0

23

Bibliography

1. Bagley, R. L., Applications of Derivatives to Viscoelasticity, Ph. D. Dissertation, Air Force
Institute of Technology; alsn published as Air Force Materials Laboratory TR-79-4103, Nov.
1979 (AD- A071726).

2. Bagley, R. L. and Torvik, P. J.,"Fractional Calculus-A Different Approach to the Analysis of
Viscoelastically Damped Structures," AIAA Journal, Vol. 21, May 1983, pp. 741-748.

3. Bagley, R. L. and Torvik, P. J.,"On the Fractional Calculus Model of Viscoelastic Behav-
ior,"Journal of Rheology, Vol. 30, No. 1, 1986, pp. 133-155.

4. Bagley, R. L. and Torvik, P. J.,"Fractional Calculus in the Transient Analysis of Viscoelastically
Damped Structures," AIAA Journal, Vol. 23, June 1985, pp. 918-925.

5. Bagley, R. L. and Torvik, P. J.,"A Theoretical Basis for the Application of Fractional Calculus
to Viscoelasticity," Journal of Rheology, Vol. 27, No. 3, 1982, pp. 201-210.

6. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1955.

7. Christensen, R. M., Theory of Viscoelasticity: An Introduction, Academic Press, New York,
1971, p. 42.

8. Craig, R. R., Jr., Structural Dynamics: An Introduction to Computer Methods, John Wiley &
Sons, New York, 1981.

9. Gel'fand, I. M., and Shilov, G. E. Generalized Functions, Vol 1, Academic Press, New York,
1964.

10. Hurty, W. C. and Rubinstein, M. F., Dynamics of Structures, Prentice-Hall, Inc. , Englewood
* WCliffs, New Jersey, 1964.

11. Jenkins, W. M., Matriz and Digital Computer Methods in Structural Analysis, McGraw-Hill,
London, 1969, pp. 170-171.

12. Spiegel, M. R., Mathematical Handbook of Formulas and Tables, McGraw-Hill Book Company,
New York, 1968.

13. Torvik, P. J. and Bagley, R. L.,"On the Appearance of the Fractional Derivative in the Behavior
of Real Materials," Journal of Applied Mechanics, Vol. 51, No. 2, 1984.

14. Torvik, P. J. and Bagley, R. L.,"Fractional Derivatives in the Description of Damping Materials
and Phenomena," The Role of Damping in Vibration and Noise Control, DE-Vol. 5, The
American Society of Mechanical Engineers.

0

24

S

Appendix A. Programming Flowcharts and Special Techniques

This appendix presents flowcharts for the three programs included in this thesis in Figures 6

through 8. The first one is for the program in Appendix D, VDRMI, which calculates the first 2mn

modes of a viscoelastically damped rod using modified matrix iteration. The second flowchart is

for the program in Appendix E, NONZEROB, which calculates the additional modes due to b # 0

by modiL'.d matrix iteration. Notice that its flow chart is very similar to the one for VDRMI. The

third flow chart is for the program in Appendix C, VDRSS1, which computes the first 2mn modes

by the spectrum shift technique presented in Chapter V. The programs are similar in the logic used

in each one. Both VDRMI and VDRSS1 calculate the new guess of A from A2 by Equation 40,

while NONZEROB uses Equation 47. If A is within tolerance, then A and {) are printed out.

If A is not within tolerance, it is used to compute [D(A)] (See Equation 41 and following text for

VDRMI and NONZEaOB, Equation 52 for VDRSS1).

In VDRMI and NONZEROB, if this is not the fundamental mode on the current branch, then

the pseudomodes (discussed in Chapter IV) must be computed and subtracted off by Equation 41.

The inverse of [K(A)] is needed to compute [D(A)]. This inversion is carried out by first

expressing [K(A)] in terms of a Choleski decomposition [11:170]:

[K(A)] = [U]T [U]

This is valid as long as JK(A)) is symmetric. The inverse of [K(A)] is given by

[K(\)]- '= [U]-I([U]-,)T

Once [D(A)] is determined, a new estimate of A and { } can be computed. The process is repeated

until A is within the desired tolerance.

The new estimate of A and {f}, and the pseudomodes in VDRMI and NONZEROB, are de-

termined using matrix iteration. Convergence in the matrix iteration portions of the programs was

2
25

0G
Do1

BRANCH=O,2m ----- I

* fMODE=1,J- STOP

0 ~[D]{4

Figur 6.t Flw hator D M

000

I1BRAN CH =0,Q->1 - ------

IMODE=,J- - -=1,N

[D(A)] toeac ChcIaleo

Do 100

0MD=1J

0Df ,

000

VD RSS 1

Read Data

Do 10
IBR-kNCH=,2m - 1 ------

Initialize
Variables

Do 11

* D(Ak)] =[D(A)]+ YsIMODE=

0N

0i

Fiur8 lw char Cher valDRfSS111 1

is 28

NoL0opueSO

0 determined by comparing the norm of the difference of successive guesses. Convergence occurred

when this norm was below a desired tolerance. Clearly, as n increases, the tolerance on {1) does

not have to be as tight for the same accuracy in A. In VDRMI and NONZEROB, the tolerance

values were picked through trial and error to find ones that gave convergence with the desired

accuracy in A. In VDRSS1, the tolerance for {€}, cl, was related to the tolerance of A, CC, by

=1/rn

After the jih eigenvalue and eigenvector are found in VDRSS1, the shift factor for the 3 + 1

eigenvalue must be computed. This is done by applying Equations 53 through 56.

Once an eigunvalue and eigenvector have been computed, they are put back into the expanded

equations of motion to check the accuracy of the solution. To make the equaitons of motion mole

manageable, multiply Equation 29 by {€}. Setting {F(s)} = 0, s'/" = A, and replacing {€} by

{x(s)),

A (65)

Expanding,

A, - [(2m + q - 1)bA 2rn+q + (2m - 1)A2m){¢}T[M]f{¢} + (q - 1)Aq{ }T[Aq]{¢} - {f}T[Aq]{€ }
[(2m + q)bA2m+q - 1 + 2mA2 m-1]{¢}T[Aj{ J + qAq-{t¢}T[Aq]{¢}

(66)

This is a convenient check on the computed value of A, end its value is printed out right after

A so that a direct comparison can be made. With the proper c values, accuracy to 5 significant

digits was typical for all programs.

0
29

Appendix B. Correlation of FORTRAN Program for Purely Elastic Rod

This appendix contrasts the first three mode shapes of a ten degree-of- freedom finite element

model against those of a continuum model for a purely elastic rod. This will give an indication of

the accuracy of the model for the viscoelastically damped case.

The continuum model for a purely damped elastic rod is developed from the harmonic equa-

tion

pA O=E 2 (67)

with bouhdary conditions

u(O,t) = u(L, t) 0

The resonant frequencies of the system are found to be

S,= ,2,... (68)

The mode shapes are

O(x) = sin(-x) (69)

In Figures 9 through 11, the first few modes of the continuum model are plotted against the

computed modes of a ten degree-of- freedom finite element model. The modes were computed

using the program in Appendix C, with the viscoelastic term set to zero. These comparisons

demonstrate the validity of the program for elastic systems.

0
30

0

00

.4.,

0 x L

Figure 9. First Mode Shape for Undamped Rod

.0

4 ,,
/ "

0O ,*'

-1..

* 11 X L.

Figure 10. Second Mode Shape for Undamped Rod

0
0a

00

0

Fiue1.TidMd SaefrUdme o

1.12

0 Appendix C. FORTRA4N' Program for Spectrum Shift Technique

This computer program calculates the first 2mn eigenvectors and eigenvalues for a viscoelas-

tically damped rod using the spectrum shift technique presented in Chapter V. A flowchart for

this program is presented in Appendix A. The program uses unformatted READ and WRITE

statements, which may produce output different from that shown in Appendix F on computers

other than a VAX/VMS. Some of the input parameters are the number of degrees of freedom and

the physical characteristics of the rod and pads, including the mass and stiffness matrices.

0

0

33

PROGRAM VDRSS1
C0
C FORTRAN Code for viscoelastically damped rod using matrix
C iteration with spectrum shift.
C
C Set up variables needed in program
C Declaration statements for variables.
C

INTEGER IQ,IM,IMAX1,IMAX2,IMAX3,N
REAL A,ALPHA,B,E0,EI,EPS1,LE,MAG,RHOE
COMPLEX IMRIO,IMRIOC,IOMA,IOMAL,IOMAS,ITA,IOM2H,IOM2S,IOMEGA,
1 PTAOP,PTAQP,PTMP,PROD,SUM,
2 IOM2,MU,MUS,
3 KE(10,10),KV(10,10),M(10,10),
4 D(0,I0),ERR(1O),KO(lO,l0),K1(lO,1O),
4 KINV(10,10),KOMEGA(10,10),PHIG(10),PHILG(l0),PPTM(10,10),
4 PSI(10),PSIG(IO),SHIFT(IO),U(lO,1O),UINV(IO,lO),
5 PHI(10)

C
C N = Number of Degrees of Freedom
C IMAX = Maximum number of times to run iteration loop
C KV = Stiffness matrix for viscoelastic damping material
C KE = Stiffness matrix for elastic rod
C M = Mass Matrix of total structure
C LE = Length of one element
C A = Cross-sectional area of rod
C RHO = material density

* C E = Young's modulus for elastic material.
C EO,EI,B,ALPHA = Parameters of Young's modulus for viscoelastic
C material.
C IOM2 = (I*OMEGA)**2 = eigenvalue
C IOMEGA = i * system frequency (sometimes also referred to
C as an "eigenvalue"
C PHI = eigenvector
C PHIG = guess at an eigenvector
C PHILG = last guess at an eigenvector
C D = Dynamical matrix
C EPS = Tolerance level

C Open input and output data files.

OPEN (UNIT=5,FILE='INPUT',STATUS='OLD')
OPEN (UNIT=9,FILE='DEBUG',STATUS='NEW')
OPEN (UNIT=10,FILE='OUTPUTI',STATUS='NEW')

write (10,*) 'OUTPUT FOR VDRSS1'

C Set value of PI
PI = 3.141592654

C Read in EPS, RHO, A, LE, parameters for E

034

C
READ (5,*) EPSO
READ (5,*) RHOE

READ (5,) AE
READ (5,*) LE
READ (5,*) E
READ (5,*) EO,El,B

write (l0,*) 'rhoe',rhoe
* write (l0,*) 'ae',ae

write (l0,*) 'le',le
write (lO,*) 'e',e
write (l0,*) 'eO',eO,' el',el,' b',b

READ (5,*) N, IQ, IM
* ALPHA = REAL(IQ)/REAL(Il)

READ (5,*) IMAXl,IMAX2,IMAX3

write (l0,*) 'n',n,' iq',iq,' Il,lm,' alpha',alpha
write (l0,*) 'imaxl,imaxl,' imax2',imax2,' imax3',imax3

* EPSi = (EPSO**(l/REAL(IM)))*SQRT(REAL(N))

write (l0,*) 'eps0',epsO,' epsl',epsl

C Read in stiffness and mass matrices for both elastic and
C viscoelastic materials.

DO 40 ICOL = 1,N
DO 50 IROW =l,N

READ (5,*) KE(IROW,ICOL)
write (10,*' ke',irow,icol,ke(irow,icol)

* KE(IROW,ICOL) =KE(IROW,ICOL)*E*AE/LE
write (10,') 'ke',irow,icol,ke(irow,icol)

50 CONTINUE
40 CONTINUE

* DO 42 ICOL = 1,N
DO 52 IROW = 1,N

READ (5,') KV(IROW,ICOL)

write (1O,*)'kv',irow,icol,kv(irow,icol)

*C Compute KO and KI elements.

KO(IROW,ICOL) = EO*KV(IROW,ICOL)
K1(IROW,ICOL) = E1'KV(IROW,ICOL)

52 CONTINUE

35

42 CONTINUE

SDO 43 ICOL =1,
* DO 53 IROW = 1,N

READ (5,*) M(IROW,ICOL)
write (10,*)',irow,icol,m(irow,icol)

MCIROW,ICOL) = M(IROW,ICOL)*RHOE*AE*LE/6.
write (10,*) 'm',irow,icol,ni(irow,icol)

*53 CONTINUE
43 CONTINUE

C* Calculate roots for branch = IBRANCH

DO 10 IBRANCH = O,2*IM-1

C Set initial values of iom2h and mu

IOM2H = CMPLX(0.1,0.1)
* IOM2S =0.0

IOMAS =0.0
MU 0.0
MUS 0.0

DO 11 J = 1,N

* DO 12 IMODE = 1,2

write (9,*) 'Computing Eigenvalue ',j,' on branch ',ibranch,
1 ' imode = 1,imode

print *, 'Computing Eigenvalue ',j,' on branch ',ibranch,
1 I imode = ',imode

C Set initial eigenvector guess.

DO 15 I 1,N
PHIG(I) = 1.0/I

15 CONTINUE

DO 20 IGUESSi = 1,IMAXl

C Check if this is the second iteration for current value of mu --

C if so, use current value of ioma and skip right to computation of
C new mu.

IF(IMODE .EQ. 2) GOTO 3000

C Calculate IOMA = (i*omega)**alpha =((i*omega)**2)**alphal2
C =(iom2h-.mu)**alpha/2

0 36

C = (abs(lom2h-mu)*exp(i*ang))**alpha/2
C =((rag**(l/im))*exp(i*ang*(1/2*im))**iq = IMRIO ** iq

* 10M2 = IOM2H - MU

C Check each new value of 10M2 -- its magnitude should be greater
C than the previous value of MU.

IF (ABS(10M2) .LT. ABSCMUS)) THEN
*MUS MU

MU =MU + IOM2H

write (9,*) 'abs(iom2)',abs(iom2),'abs(mus) ',abs(mus)
print *, 'mus 1st chk',mus,'iom2h',iom2h

* IOM2H = 0.0
C Reset initial eigenvector guess.

DO 17 I 1,N
PHIG(I = 1.0/I

17 CONTINUE
* GOTO 20

ENDIF

REIOM2 REAL(IOM2)
AIMIOM2 =AIMAG(I0M2)

MAG =SQRT(REIOM2**2 + AIMIOM2**2)
* VANG ATAN2(AIMIOM2,REIOM2)

IF (ANG .LT. 0) ANG =ANG + 2*PI

ARO (ANG + 2*IBRANCH*PI)/REAL(2*IM)

*IMRIO (MAG**(1/REAL(2*IM)))*CMPLX(COS(ARG),SIN(ARG))

IOMEGA =IMRIO**IM

IOMA =IMRIO**IQ

* DIF =ABS((IOMA - IOMAS)/IOMA)

IF (DIF .LT. 2.*SQRT(EPSO)) THEN
IF(IOM2H .EQ. 0) GO TO 29

MUS M U
MU =MU + IOM2H

print *, 'mus',mus,'iorn2h',iom2h
write (9,*) 'mus',mus,'iom2h',iom2h

IOM2H =0.0
C Reset initial eigenvector guess.

37

DO 16 1 = ,N
PHIG(I) = 1.0/I

*16 CONTINUE

GOTO 20
ENDIF

DIF = ABS((IOMA - IOMAL)/IOMA)

write (9,*) 'dif',dif,'errnorm',errnorm

IF (DIF .LT. EPSO .AND. ERRNORM .LT. EPSi) GO TO 5400
IOMAL =IOMA

*C Now compute K(omega).

29 DO 30 ICOL = 1,N
DO 31 IROW = 1,N
KOMEGA(IROW,ICOL) =KE(IROW,ICOL) +

1 (KO(IROW,ICOL) + IOMA*K1CIROW,ICOL))/(l + B*IOMA)
*2 - MU*M(IROW,ICOL)

31 CONTINUE
30 CONTINUE

C
C *
C *Compute dynamical matrix*
C
C
C
C First compute inverse of K by using a Cholesky decomposition

*C KOMEGA = Utranspose * U
C Compute U

U(1,1) = CSQRT(KOMEGA(1,1))

DO 110 ICOL = 2,N
U(I,ICOL) = KOMEGA(1,ICOL)/U(1,1)

*110 CONTINUE

DO 120 IROW =2,N
SUM = 0.0
DO 130 ITER = 1,IROW-1

SUM = SUM + U(ITER,IROW)**2
*130 CONTINUE

U(IROW,IROW) =CSQRT(KOMEGA(IROW,IROW)-SUM)

DO 140 ICOL =IROW+1,N

SUM = 0.0
DO 150 ITER =1,IROW-1

* 38

SUM =SUM + U(ITER,IROW)*U(ITER,ICOL)
150 CONTINUE

U(IROW, ICOL) =(KOMEGA(IROW, ICOL)-SUM)/U(IROW, IROW)

140 CONTINUE
120 CONTINUE
C inverse of KOMEGA = (inverse of U)*(inverse of U,transposed)
C First calculate inverse of U

DO 200 ICOL = 1,N
* UINV(ICOL,ICOL) =1.0/U(ICOL,ICOL)

DO 210 IROW =1,ICOL-1
SUM =0.0
DO 220 ITER = IROW, ICOL-1

SUM =SUM + UINVCIROW,ITER)*U(ITER,ICOL)
*220 CONTINUE

UINV(IROW,ICOL) =-SUM/U(ICOL,ICOL)

210 CONTINUE
200 CONTINUE
C Now for KOMEGA inverse

* DO 230 IROW = 1,N
DO 240 ICOL =1,N
KINV(IROW,ICOL) =0.0

DO 250 ITER =1,N

KINV(IROW,ICOL) KINV(IROW,ICOL) +
1 UINV(IROW,ITER) *UINV(ICOL,ITER)* U250 CONTINUE

240 CONTINUE
230 CONTINUE
C Compute D =KINV *M

DO 500 IROW =1,N
DO 600 ICOL 1,N

* D(IROW,ICOL) =0.0

DO 700 ITER 1,N
D(IROW,ICOL) =D(IROW,ICOL) +

1 KINV(IROW,ITER) *M(ITER,ICOL)
700 CONTINUE
600 CONTINUE

*500 CONTINUE

C If this is primary eigenvalue, do not compute a new d.

IF (IMODE .EQ. 1) Go To 3900

C Compute new dynamical matrix for computation of next higher mode.

C Normalize eigenvectors such that (PHI transposed)(M)(PHI) = 1.

3000 PROD = 0.0

0 39

DO 2000 IROW =1,N
SUM = 0.00 DO 2100 ICOL = 1,N

* SUM = SUM + M(IROW,ICOL)*PHI(ICOL)
2100 CONTINUE

PROD = PROD + PHI(IROW)*SUM
2000 CONTINUE

PROD =CSQRT(PROD)
* DO 2200 1 =l,N

PHI(I = PHICI)/PROD
2200 CONTINUE

C D = D + (PHI)(PHI transposed)CM)/IOM2H
C First compute second term, then add it to D

* DO 3100 IROW = 1,N
DO 3200 ICOL =1,N

PPTM(IROW,ICOL) = 0.0
DO 3300 ITER =1,N

PPTM(IROW,ICOL) = PPTN(IROW,ICOL) +
1 PHI(IROW) * PHICITER) *M(ITER,ICOL)

*3300 CONTINUE
D(IROW,ICOL)= D(IROW,ICOL) +

PPTM(IROW,ICOL)/(10M2S+MU)

3200 CONTINUE.03100 CONTINUE

C
C *Compute a new guess for OMEGA.*
C

*3900 DO 4000 IGUESS3 =1,IMAX3

C
C Compute PHI =D*PHIG

C
DO 4100 I = 1,N

PHI(I) =0.0
* DO 4200 ITER =1,N

PHI(I) =PHI(I) + D(I,ITER)*PHIG(ITER)
4200 CONTINUE
4100 CONTINUE
C
C Normalize on first element. (This is valid for this problem

*C as we are using a simple rod; the first element will never
C be zero.) Store the first element of PHI as a "guess" of
C IOM2H. I0M2 =IOMEGA**2, where OMEGA is the frequency of
C the system.

IOK2H =-l./PHI(l)

04

DO 4300 I =2,N
PHI(I) = PHI(I) / PHIMl)

4300 CONTINUE
PHIMi) = 1.0

C
C Check to see if the guess is within tolerance level.
C Get error vector and compute its norm.

DO 4310 I= 1,N
ERR(I) = PHIG(I) - PHI(I)

4310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.

ERRNORM2 = 0.0
DO 4320 ITER = 1,N

ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER))**2

4320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

write (9,*) 'errnorm for phi',errnorm

IF (ERRNORM .GT. EPSl) THEN
DO 4330 I = 1,N

PHIG(1) PHI(I)
4330 CONTINUE

.0O ELSE
IF (IMODE .EQ. 2) THEN

MU = MU - IOM2H

C Make sure shift is in right direction -- abs(mu) should be
C greater than the magnitude of the last iom2, or mu, calculated.
C If it isn't, add iom2h rather than subtracting it.

IF (ABS(MU) .LT. ABS(MUS)) MU = MU + 2*IOM2H

C Reset IOM2H:

IOM2H = 0.0

write (i0,*) 'mu',mu
write (9,*) 'mu',mu

GOTO 11
ELSE

IF (IMODE .EQ. 1) GO TO 4400

ENDIF
ENDIF

4000 CONTINUE

41

0

C We did not converge on a new estimate. If IMODE 2, keep
C trying. If this is the primary mode, reset mu.

WRITE (9,*) 'NEW ESTIMATE NOT FOUND'

IF (IMODE .EQ. 2) GO TO 20

MU = MU - IOM2H

C Make sure shift is in right direction -- abs(mu) should be
C greater than the magnitude of the last mu calculated. If it
C isn't, add iom2h rather than subtracting it.

IF (ABS(MU) .LT. ABS(MUS)) MU = MU + 2*IOM2H
write (9,*) 'reset mu',mu,'iom2h =',iom2h

C Reset IOM2H:
IOM2H = 0.0

GO TO 20

C Need to check if the new guesses of omega and phi are within
C tolerance.
C Get error vector and compute its norm.
4400 DO 5310 I= 1,N

ERR(I) = PHILG(I) - PHI(I)
.0 5310 CONTINUE

C Find norm of error vector -- this is the radius of the error
C sphere.

ERRNORM2 = 0.0
DO 5320 ITER 1,N

ERRNORM2 ERRNORM2 + REAL(ERR(ITER))**2 +
* 1 AIMAG(ERR(ITER))**2

5320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

DO 5330 I = 1,N
PHILG(I) = PHI(I)

5330 CONTINUE
20 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
1 ' EIGENVECTOR NO. ',J

C No sense computing additional eigenvalues, since they
C depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'

*42

0

GO TO 9999

*C Write eigenvalue and eigenvector to output file
5400 MUS = - I0M2

IOMAS = IOMA
IOM2S = I0M2

WRITE (10,*) 'Branch No.',IBRANCH,' (i*OMEGA)**2',J,
1 1 = ',10M2

WRITE (10,*) 'iomega',IOMEGA
WRITE ClO,*) 'imrio 1,imrio

PTAOP =0.0
* DO 6000 IROW = l,N

SUM = 0.0
Do 6100 ICOL = 1,N

SUM = SUM + (KO(IROW,ICOL)4KE(IROW,ICOL))*PHI(ICOL)
6100 CONTINUE

PTAOP = PTAOP + PHI(IROW)*SUM
*6000 CONTINUE

PTAQP = 0.0
DO 6010 IROW =l,N

SUM = 0.0
DO 6110 ICOL =1,N

* 5 SUM =SUM + (K~tIROWICOL)+B3*KE(IROW,CoL))*PHI~(ICOL)
6110 CONTINUE

PTAQP = PTAQP + PHI(IROW)*SUM
6010 CONTINUE

PTMP =0.0
* DO 6300 IROW =1,N

SUM = 0.0
DO 6400 ICOL = 1,N

SUM = SUM + M(IROW, ICOL)*PHI(ICOL)
6400 CONTINUE

PTMP =PTMP + PHI(IROW)*SUM
*6300 CONTINUE

Q REAL(IQ)
TM =REkL(2*IM)

TMQ =TM + Q
TM1 TM - 1.

* IMRIOC =(((TMQ-1)*B*(IMRIO**(2*IM+IQ))+TMM1*(IMRIO**(2*IM)))*PTMP
1 +(Q-1.)*(IMRIO**(IQ))*PTAQP-PTAOP)
1 /((TMQ*B*IMRIO**(2*IM+IQ-1)+TM*(IMRIO**(2*IM-1)))*PTMP
1 +Q*(IMRIO**(IQ-1))*PTAQP)
WRITE (1O,*) 'imrioc',IMRIOC

43

DO 5500 1=1,N
WRITE (2O,*) PHI(I)

5500 CONTINUE

IF (3 .EQ. N) GOTO 11
12 CONTINUE
21 CONTINUE
10 CONTINUE
9999 STOP

END

441

0 Appendix D. FORTRAN Program for Modified Alatri Iteration Technique

This computer program computes :he first 2mn eigenvectors and eigenvalues for a viscoelas-

tically damped rod using the modified matrix iteration techniques presented in Chapter IV. A

flowchart for this program is presented in Appendix A. The program uses unformatted READ

and WRITE statements, which may produce output different from that shown in Appendix F on

computers other than a VAX/VMS. Some of the input parameters are the number of degrees

of freedom and the physical characteristics of the rod and pads, including the mass and stiffness

matrices.

,0

.0

45

PROGRAM VDRMI
C
C FORTRAN Code for viscoelastically damped rod using matrix
C iteration.
C
C Set up variables needed in program
C Decldration statements for variables.
C

INTEGER FLAG,IQ,IM,IMAX1,IMAX2,IMAX3,N
REAL A,ALPHA,B,E0,EI,EPS1,EPS2,EPS3,LE,MAG,RHOE
COMPLEX IOMA,IMRIOC,IOMAL,IMRIO,PROD,PTAOP,PTAQP,PTMP,
2 SUM, IOM2,IOMEGA,
3 KE(10,10),KV(10,10),M(10,10),
4 D(10,10),ERR(10),KO(10,10),KI(10,10),
4 KINV(10,10),KOMEGA(10,10),PHIG(10),PHILG(10),PPTM(10,10),
4 PSI(10),PSIG(10),U(10,10),UINV(10,10),
5 PHI(10)

C
C N = Number of Degrees of Freedom
C IMAX = Maximum number of times to run iteration loop
C KV = Stiffness matrix for viscoelastic damping material
C KE = Stiffness matrix for elastic rod
C M = Mass Matrix of total structure
C LE = Length of one element
C A = Cross-sectional area of rod
C RHO = material density
C E = Young's modulus for elastic material.

* U C EO,EI,B,ALPHA = Parameters of Young's modulus for viscoelastic
C material.
C IOMEGA = i * system frequency
C IMRIO = Mth root of IOMEGA
C IMRIOC = check value for IMRIO
C IOMA = IOMEGA to the ALPHA

* C IOM2 = IOMEGA squared
C PHI = eigenvector
C PHIG = guess at an eigenvector
C PHILG = last guess at an eigenvector
C PSI = lower mode eigenvector
C PSIG = guess at lower mode eigenvector
C D = Dynamical matrix
C EPS = Tolerance level

C Open input and output data files.

OPEN (UNIT=5,FILE='INPUT',STATUS='OLD')
OPEN (UNIT=9,FILE='DEBUG',STATUS='NEW')
OPEN (UNIT=I0,FILE='OUTPUT',STATUS='NEW')

write (10,*) 'OUTPUT FOR VDRMI'

C Set value of PI

*46

PI 3.141592654

0C Read in EPS, RHO, A, LE, parameters for E
* C

READ (5,*) EPS0,EPS1,EPS2,EPS3
READ (5,*) RHOE
READ (5,*) AE
READ (5t*) LE
READ (5,*) E

READ (5,) EO,El,B

write (lO,*) 'eps0',eps0,' epsl',epsl
write (10,*) teps2I,eps2,I eps3',eps3
write ClO,*) 'rhoe',rhoe
write (lO,*) tael,ae

write (l0,) 'le',le
write (lO,*) 'e',e
write (l0,*) 'eO',eO,' el',el,' b',b

READ (5,*) N, IQ, IM
ALPHA = REAL(IQ)/REAL(IM)

* READ (5,*) IMAXl,IMAX2,IMAX3

write (l0,*) 'n',n,' iq',iq,l im',im,' alpha',alpha
write (l0,*) 'imaxli,imaxl,' imax2',imax2,' imax3',imax3

C Read in stiffness and mass matrices for both elastic and.0C viscoelastic materials.

DO 40 ICOL = 1,N
DO 50 IROW = 1,N

READ (5,*) KE(IROW,ICOL)

* write (l0,*)'kel,irow,icol,ke(irow,icol)

KE(IROW,ICOL) = KE(IROW,ICOL)*E*AE/LE

write (lO,*) tkel,irow,icol,ke(irow,icol)

*50 CONTINUE
40 CONTINUE

DO 42 ICOL =l,N
DO 52 IROW =1,N

READ (5,*) KV(IROW,ICOL)

write (10,*) 'kv',irow,icol,kv(irow,icol)

C Compute KO and K1 elements.

KO(IROW,ICOL) =EO*KV(IROW,ICOL)

0 47

Kl(IROW,ICOL) E1*KV(IROW,ICOL)

*52 CONTINUE
42 CONTINUE

DO 43 ICOL =l,N
DO 53 IROW = 1,N

READ (5,*) M(IROW,ICOL)
* write (l0,*)'m',irow,jcol,m(jrow,icol)

M(IROW,ICOL) = M(IROW,ICOL)*RHOE*AE*LE/6.
write (10,*)ImI,irow,icol,m(irow,icol)

53 CONTINUE
*43 CONTINUE

C* Calculate roots for branch IBRANCH

* DO 10 IBRANCH =0,2*IM-1

C Set initial value of iom2

10M2 =CMPLX(1.0,l.0)

@ 0C Reset FLAG

FLAG = 0

DO 11 J =1,N

* WRITE(9,*) 'Computing Eigenvalue No.',j,'on
branch , ibranch

print *, 'Computing Eigenvalue No. ',j,'on branch',ibranch

DO 20 IGUESSi = 1,IMAXI

*C Check if this is the first iteration on same branch -- if so, use
C current value of ioma and skip right to computation of new D.

IF(FLAG .EQ. 1) GOTO 900

C Calculate IOMA = (i*omega)**alpha =((iiomega)**2)**alpha/2
*C = (iom2)**alpha/2

C = (abs(iom2)*exp(i*ang))**alpha/2
C = ((mag**(l/im))*exp(i*ang*(1/2*im))**iq = IMRIO ** iq

REIOM2 = REAL(I0M2)
AIMIOM2 = AIMAG(I0M2)

* 48

MAG =SQRT(REIOM2**2 + AIMIOM2**2)
ANG = ATAN2CAIMIOM2,REIOM2)

* IF (ANG .LT. 0) ANG = ANG + 2*PI

ARG = (ANG + 2*IBRANCH*PI)/(2*IM)

IMRIO = (MAG**(1/REAL(2*IM)))*CMPLXCCOS(ARG),SIN(ARG))

* IOMEGA = (IMRIO**IM)

IOMA =IMRIO**IQ

C Now compute K(omega).

*29 DO 30 ICOL = ,N
DO 31 IROW = 1,N

KOMEGA(IROW,ICOL) = KE(IROW,ICOL) +
1 (KC(IROW,ICOL) + IOMA*K1(IROW,ICOL))/(1 + B*IOMA)

31 CONTINUE
30 CONTINUE

DIF =ABS(IOMA - IOMAL)

write (9,*) Idift,dif,lerrnorm',errnorm

IF (DIF .LT. EPSO .AND. ERRNORM .LT. EPSi) GO TO 5400.0 IOMAL = IOMA

C
C

C *Compute dynamical matrix
* C *

C
C
C First compute inverse of K by using a Cholesky decomposition
C KOMEGA = Utranspose * U
C Compute U

* U(1,1) = CSQRT(KOMEGA(l,1))

DO 110 ICOL = 2,N
U(1,ICOL) = KOMEGA(1,ICOL)/U(1,1)

110 CONTINUE

* DO 120 IROW = 2,N
SUM = 0.0
DO 130 ITER = 1,IROW-1

SUM = SUM + U(ITER,IROW)**2
130 CONTINUE

U(IROW,IROW) =CSQRT(KOMEGA(IROW,IROW)-SUM)

0 49

Do 140 ICOL =IROW+1,N

SUM = 0.0

* Do 150 ITER =1,IROW-1
SUM =SUM + U(ITER,IROW)*U(ITER,ICOL)

150 CONTINUE
U(IROW,ICOL) =(KOMEGA(IROW,ICOL)-SUM)/U(IROW,IROW)

140 CONTINUE

*120 CONTINUE

C inverse of KOMEGA =(inverse of U)*(inverse of U,transposed)

C First calculate inverse of U
DO 200 ICOL =1,N

UINV(ICOL,ICOL) =1.0/U(ICOL..ICOL)

*DO 210 IROW -z1,ICOL-1
sum = 0.0
Do 220 ITER =IROW, ICOL-1

SUM = SUM + UINV(IROW,ITER)*U(ITER,ICOL)
220 CONTINUE

UINV(IROW,ICOL) = -SUM/U(ICOL,ICOL)

210 CONTINUE
200 CONTINUE
C Now for KOMEGA inverse

DO 230 IROW = 1,N
DO 240 ICOL =1,N
KINV(IROW,ICOL) 0.0

DO 250 ITER 1,N
KINV(IROW,ICOL) KINV(IROW,ICOL) +

1 UINV(IROW.ITER) *UINV(ICOL,ITER)

250 CONTINUE

240 CONTINUE
*230 CONTINUE

C ComputeD =KINV M

DO 500 IROW = 1,N
DO 600 ICOL =1,N

D(IROW,ICOL) =0.0

DO 700 ITER 1,N

* D(IROW,ICOL) = D(IROW,ICOL) +

1 KINV(IROW,ITER) *M(ITER,ICOL)

700 CONTINUE
600 CONTINUE
500 CONTINUE

*C If J > 1, compute lower order modes and calculate a new

C dynamical matrix, one with the lower modes subtracted off.

IF (J .EQ. 1) GO To 3900

C

50

C * Compute lower modes
C
C

*900 DO 1000 IMODE =1, J-1

IF(FLAG .EQ. 1) THEN
FLAG = 0
GOTO 3000

ENDIF

C Set initial eigenvector guess.
DO 1010 I = 1,N

PSIG(I) =1.0/I
1010 CONTINUE

DO 1050 IGUESS2 - ,IMAX2
C
C Compute PSI =D*PSIG

C
DO 1100 I = 1,N

P51I) 0.0
DO 1200 ITER 1 ,N

* PSI(I) =PSI(I) + D(I,ITER)*PSIG(ITER)
1200 CONTINUE

1100 CONTINUE
___ C

* UC Normalize on first element. (This is valid for this problem
C as we are using a simple rod; the first element will never
C be zero.) Store the first element as a "1guess" of I0M2.
C I0M2 =(I*W)**2, where W is the frequency of the system.

I0M2 = -l./PSI(l)

DO ino0 I =2,N
PSIMi = FSIMi / PSIMl

1300 CONTINUE
P5I1l) =1.0

C
*C Check to see if the guess is within tolerance level.

C Get error vector and compute its norm.
DO 1310 I= 1,N

ERR(I) = PSIG(I - PS1I)
1310 CONTINUE
C Find norm of error vector -- this is the radius of the error

*C sphere.
ERRNORM2 = 0.0
DO 1320 ITER 1,N

ERRNORM2 ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER))**2

1320 CONTINUE

* 51

ERRNORM = SQRT(ERRNORM2)

0 wxite(9,*) 'errnorm for psi',errnorm

IF (ERRNORM .LT. EPS2) GO TO 3000
DO 1330 1 = 1,N

PSIG(I) = PSICI)
1330 CONTINUE
1050 CONTINUE

* WRITE (1O,*) 'DID NOT CONVERGE ON MODE',IMODE,
1 ' EIGENVECTOR NO.',J,'BRANCH NO.',IBRANCH
WRITE (1o,*) 'TERMINATING PROGRAM'

GO TO 9999

*C Compute new dynamical matrix for computation of next eigenvalue
C and eigenvector.

C Normalize eigenvectors such that (PSI transposed)(M)(PSI) 1.

3000 PROD =0.0
* DO 2000 IROW = 1,N

SUM =0.0
DO 2100 ICOL = 1,N

SUM = SUM + M(IROW,ICOL)*PSI(ICOL)
2100 CONTINUE

PROD =PROD + PSI(IROW)*SUM@ 02000 CONTINUE

PROD = CSQRT(PROD)
DO 2200 I = 1,N

PS1(I) =PS1(I)/PROD
2200 CONTINUE

C D = D + (1./I0M2)CPSI)CPSI transposed)(M)
C First compute second term, then subtract it from D

DO 3100 IROW = 1,N
DO 3200 ICOL = 1,N

PPTM(IROW,ICOL) = 0.0
* DO 3300 ITER = 1,N

PPTM(IROW,ICOL) =PPTM(IROW,ICOL) +
1 PSI(IROW) * PSI(ITER) * M(ITER,ICOL)

3300 CONTINUE
DCIROW,ICOL) =D(IROW,ICOL) + 1./I0M2*

1 PPTM(IROW, ICOL)

320CNIU
3200 CONTINUE
1000 CONTINUE

C

* 52

C *Compute a new guess for OMEGA.
C

*3900 DO 4000 IGUESS3 = l,IMAX3

C Check if this is the first iteration on this eigenvalue.

IF (IGUESSI .GT. 2 .OR. IGUESS3 .GT. 1) GOTO 3950

*C Set initial eigenvector guess.

DO 15 I = 1,N
PHIG(I) 1.0/I

15 CONTINUE

*C Compute PHI =D*PHIG

C
3950 DO 4100 I 1,N

PHI(I) =0.0
DO 4200 ITER =1,N

PHIMI PHI(I + D(I,ITER)*PHIGCITER)
*4200 CONTINUE

4100 CONTINUE
C
C Normalize on first element. (This is valid for this problem
C as we are using a simple rod; the first element will never
C be zero.) Store the first element as a "guess" of IC-'!l.

* UC I0M2 = (IOMEGA**2), where IOMEGA is i times the frequency
of the
C system.

I0M2 =-1./PHI(l)

* DO 4300 I =2,N
PHI(I) =PHI(I) / PHI(l)

4300 CONTINUE
PHI(l) = 1.0

C
C Check to see if the guess is within tolerance level.

*C Get error vector and compute its norm.
DO 4310 I= 1,N

ERR(I) =PHIG(I - PHI(I
4310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.

* ERRNORM2 = 0.0
DO 4320 ITER, 1,N

ERRNORM2 ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER))**2

4320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

0 53

write (9,*) 'errnorm for phi',errnorm

IF (ERRNORM .LT. EPS3) GO TO 4400
DO 4330 I = 1,N

PHIG(I) = PHI(I)
4330 CONTINUE
4000 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
1 ' EIGENVECTOR NO. ',J

C No sense computing additional eigenvalues, since they
C depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'

GO TO 9999

C Need to check if the new guesses of omega and phi are within
C tolerance.
C Get error vector and compute its norm.
4400 DO 5310 I= 1,N

ERR(I) = PHILG(I) - PHI(I)
5310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.

* ERRNORM2 = 0.0
DO 5320 ITER 1,N

ERRNORM2 ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER))**2

5320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

DO 5330 I = 1,N
PHILG(I) = PHI(I)

5330 CONTINUE
20 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
' EIGENVECTOR NO. ',J

C No sense computing additional eigenvalues, since they
C depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'

GO TO 9999

C Write eigenvalue and eigenvector to output file

054

5400 WRITE (10,') 'Branch No.',IBRANCH,' Eigenvalue No.',J,
11 = I,10M2

WRITE (10,*) 'iomega',IOMEGA
*WRITE (10,') limrio l,jmrio

PTAOP = 0.0
DO 6000 IROW = 1,N

SUM =0.0
DO 6100 ICOL =1,N

* SUM =SUM + (KO(IROW.ICOL)+KE(IROW,ICOL))*PHI(ICOL)
6100 CONTINUE

PTAOP = PTAOP + PHI(IROW)*SUM
6000 CONTINUE

PTAQP = 0.0
* DO 6010 IROW =1,N

SUM = 0.0
DO 6110 ICOL = 1,N

SUM =SUM + (KI(IROW,ICOL)+B*KE(IROW,ICOL))*PHI(ICOL)
6110 CONTINUE

PTAQP = PTAQP + PHI(IROW)*SUM
*6010 CONTINUE

PTMP =0.0
DO 6300 IROW =1,N

SUM = 0.0
DO 6400 ICOL = 1,N

* 3 SUM = SUM 4 M(lROW,lCOL)*PHI(lCOL)
6400 CONTINUE

PTMP = PTMP + PHI(IROW)*SUM
6300 CONTINUE

Q =REAL(IQ)

* TM =REAL(2*IM)

TMQ TM + Q
TMM1 =TM - 1.
IMRIOC =(((TMQ-1)*B*(IMRIO**(2*IM+IQ))+TMM1*(IMRIO**(2*IM)))*PTMP

1 +(Q-1.)*(IMRIO**(IQ))*PTAQP-PTA0P)
1 /C(TMQ*B*IMRIO**(2*IM+IQ-1)+TM*(IMRIO**(2*IM-1)))*PTMP

*1 +Q*CIMRIO**(IQ-1l))*PTAQP)
WRITE (10,*) limrioc',IMRIOC

DO 5500 I=1,N
WRITE (10,') PHICI)

C Set PSI =PHI for first computation of new D.
P51(I) =PHI(I)

5500 CONTINUE

55

C Let the first guess of iomega be the last value. Set FLAG.

*FLAG = 1

11 CONTINUE
10 CONTINUE
9999 STOP

END

.0

* 56

0

01

Appendix E. FORTRAN Program for Eigen values Due to Nonzero B

This computer program computes the additional nq eigenvectors and eigenvalues for a vis-

coelastically damped rod that arise due to a nonzero b in the viscoelastic model (see Equation 28).

The techniques techniques presented in Chapter IN' are used in this program. A flowchart for this

program is presented in Appendix A. The program uses unformatted READ and WRITE state-

ments, which may produce outpot different from that shown in Appendix F on computers other

than a VAX/VMS. Some of the input parameters are the number of degrees of freedom and the

physical characteristics of the rod and pads, including the mass and stiffness matrices.

0
57

PROGRAM NONZEROB
C
C FORTRAN Code to compute structural modes due to non-zero b
C for viscoelastically damped rod using matrix iteration.
C
C Set up variables needed in program
C Declaration statements for variables.
C

INTEGER FLAG,IQ,IM,IMAX1,IMAX2,IMAX3,N
REAL A,ALPHA,B,E0,EI,EPS1,EPS2,EPS3,LE,MAG,RHOE
COMPLEX BIOMAP2,IOMA,IMRIOC,IOMAL,TMRIO,IMRIOL,
1 PROD,PTAOP,PTAQP,PTMP,
2 SUM, IOM2,IOMEGA,
3 KE(10,10),KV(10,10),M(10,10),
4 D(10,10),ERR(I0),KO(IO,l0),KI(10,10),
4 KINV(10,10),KOMEGA(10,10),PHIG(10),PHILG(10),PPTM(10,10),
4 PSI(1O),PSIG(10),U(10,10),UINV(10,10),
5 PHI(10)

C
C N = Number of Degrees of Freedom
C IMAX = Maximum number of times to run iteration loop
C KV = Stiffness matrix for viscoelastic damping material
C KE = Stiffness matrix for elastic rod
C M = Mass Matrix of total structure
C LE = Length of one element
C A = Cross-sectional area of rod
C RHO = material density
C E = Young's modulus for elastic material.
C EO,E1,B,ALPHA = Parameters of Young's modulus for viscoelastic
C material.
C IOMEGA = i * system frequency
C IMRIO = Mth root of IOMEGA
C IMRIOC = check value for IMRIO
C IOMA = IOMEGA to the ALPHA
C IOM2 = IOMEGA squared
C PHI = eigenvector
C PHIG = guess at an eigenvector
C PHILG = last guess at an eigenvector
C PSI = pseudoeigenvector
C PSIG = guess at psuedoeigenvector
C D = Dynamical matrix
C EPS = Tolerance level

C Open input and output data files.

OPEN (UNIT=5,FILE='INPUT',STATUS='OLD')
OPEN (UNIT=9,FILE='DEBUG',STATUS='NEW')
OPEN (UNIT=10,FILE='OUTPUT',STATUS='NEW')

write (10,*) 'OUTPUT FOR NONZEROB'

*58

C Set value of PI
PI 3.141592654

*C Read in EPS, RHO, A, LE, parameters for E
C

READ (5,*) EPSO,EPSI,EPS2,EPS3
READ (5,*) flHOE
READ (5,*) ziE
READ (5,*) ,.E

READ (5,) E
READ (5,*) EO,E1,B

write (1O,*) 'epsO',epsO,' epslt,epsl
write (lO,*) Peps2t,eps2,? eps3l,eps3
write (1O,*) 'rhoe',rhoe

write (lO,) 'ael,ae
write (jQ,*) Ile',le
write (lO,*) 'e',e
write (1O,*) 'eO',eO,' el',el,' b',b

READ (5,t) N, IQ, IM
* ALPHA = REALCIQ)/REAL(IM)

READ (5,*) IMAXl,IMAX2,IMAX3

write (1O,*) *ril,n~,l iq?,iq,l im',im,' alpha',alpha
write (10,') liuaxl',imaxl,' imax2',imax2,' imax3',imax3

*C Read in stiffness and mass matrices for both elastic and
C viscoelastic materials.

DO 40 ICOL = 1,N
DO 50 IROW =1,N

READ (5,*) KECIROW,ICOL)
06

write (1O,*)'ke',iro,,icol,ke(irow,icol)

KE(IROW,ICOL) = KE(IROW,ICOL)*E*AE/LE

write (10,*) 'ke',irow,icol,ke(irow,icol)

50CNIU
50 CONTINUE

DO 42 ICOL = 1,N
DO 52 IROW = 1,N

* READ (5,') KV(IROW,ICOL,)

write (10,') 'kv',irow,icol,kv(jrow,icol)

C Compute KO and K1 elements.

0 59

KO(IROW,ICOL) = EO*KV(IROW,ICOL)
Kl(IROW,ICOL) =El*KV(IROW,ICOL)

52 CONTINUE
42 CONTINUE

DO 43 ICOL = 1,N
DO 53 IROW = 1,N

* READ (5,*) M(IROW,ICOL)
write (10,*) 'rn,irow,icol,m(irow,icol)

M(IROW,ICOL) = M(IROW,ICOL)*RHOE*AE*LE/6.
write (l0,*) 'rn,irow,icol,rn(irow,icol)

*53 CONTINUE
43 CONTINUE

C*Calculate roots for branch =IBRANCH

DO 10 IBRANCH = O,IQ-l

C Set initial value of iom2

IMRIO CMPLX(-l.0/B)
10H2 IKRIO**(2*IM)
BIOMAP2 =0.0

C Reset FLAG

FLAG =0

0 DO 11 J =1,N

WRITE(9,*) 'Computing Eigenvalue No.',j,'on branch',ibranch
print *, 'Computing Eigenvalue No.',j,'on branch',ibranch

* DO 20 IGUESS1 = 1,IMAXl

C Check if this is the first iteration on same branch -- if so, use
C current value of ioma and skip right to computation of new D.

IF(FLAG .EQ. 1) GOTO 900

C Calculate IOMA =(i*omega)**alpha = IMRIO ** iq
C IMRIO = (Q - iom2)/(b*iom2*imrio**(q-1))
C Q = b*Ci*omega)**(alpha+2) + iom2 = biomap2

IOMA = ((BIOMAP2 - IOM2)/(B*(IMRIO**(2*IM+IQ-1))))**IQ

06

REIOMA =REALCIOMA)
AIMIOMA = AIMAG(IOMA)

MACG SQRT(REIOMA**2 + AIMIOMA**2)
*ANG = ATAN2(AIMIOMA,REIOMA)

IF (ANG .LT. 0) ANG =ANG + 2*PI

ARO = (ANG + 2*IBRANCH*PI)/REAL(IQ)

* IMRIO =(MAG**(1/REAL(IQ)))*CMPLX(COS(ARG),SIN(ARG))

IOMEGA = IMRIO**IM

IOMA = IMRIO**IQ
I0M2 = IOMEGA**2

print *,Ibiomap2I,biomap2,iomA,iomA

C Now compute K(omega).

29 DO 30 ICOL =1,N
* DO 31 IROW =1,N

KOMEGA(IROW,ICOL) = (1+B*IOMA)*KE(IROW,ICOL) +
1 KQ(IROW,ICOL) + IOMA*Kl(IROW,ICOL)

31 CONTINUE
30 CONTINUE

* DIF = ABS(IMRIO - IMRIOLJ

write (9,*) 'dif',dif,'errnorm',errnorm

IF (DIF .LT. EPSO .AND. ERRNORM .LT. EPSI) GO TO 5400
IMRIOL = IMRIO

0C
C

C *Compute dynamical matrix
C

* C
C
C First compute inverse of K by using a Cholesky decomposition
C KOMEGA =Utranspose * U
C Compute U

U(1,1) = CSQRT(KOMEGA(1,1))

DO 110 ICOL = 2,N
U(1,ICOL) = KOMEGA(1,ICOL)/U(1,1)

110 CONTINUE

DO 120 IROW = 2,N

* 61

SUM = 0. 0
DO 130 ITER = 1,IROW-1

SUM =SUM + U(ITER,IROW)**2
*130 CONTINUE

U(IROW,IROW) =CSQRT(KOMEGA(IROW,IROW)-SUM)

DO 140 ICOL =IROW+1,N

SUM =0.0
DO 150 ITER =1,IROW-l

* SUM = SUM + U(ITER,IROW)*U(ITER,ICOL)
150 CONTINUE

U(IROW,ICOL) =(KOMEGA(IROW,ICOL)-SUM)/U(IROW,IROW)

140 CONTINUE
120 CONTINUE

C inverse of KOMEGA = (inverse of U)(inverse of U,transposed)
C First calculate inverse of U

DO 200 ICOL = 1,N
UINV(ICOL,ICaL = .0/U(ICOL,ICOL)

DO 210 IROW = 1,ICOL-1
* SUM = 0.0

DO 220 ITER = IROW, ICOL-1
SUM =SUM + UINV(IROW,ITER)*U(ITER,ICOL)

220 CONTINUE
UINV(IROW,ICOL) = -SUM/U(ICOL,ICOL)

210 CONTINUE
200 CONTINUE
C Now for KOMEGA inverse

DO 230 IROW =1,N
DO 240 ICOL =1,N
KINV(IROW,ICOL) 0.0

* DO 250 ITER =1,N

KINV(IROW,ICOL) =KINV(IROW,ICOL) +
1 UINV(IROW,ITER) *UINV(ICOL,ITER)

250 CONTINUE
240 CONTINUE
230 CONTINUE

*C Compute D =KINV M
DO 500 IROW = 1,N

DO 600 ICOL 1,N
D(IROW,ICOL) =0.0

DO 700 ITER =1,N

D(IROW,ICOL) =D(IROW,ICOL) +

701 COTNEKINV(IROW,ITER) M (ITER,ICOL)

700 CONTINUE
500 CONTINUE

C If J > 1, compute lower order modes and calculate a new

62

C dynamical matrix, one with the lower modes subtracted off.

IF (J .EQ. 1) GO TO 3900

C
C * Compute lower modes *
C
C
900 DO 1000 IMODE = 1, J-1

IF(FLAG .EQ. 1) THEN
FLAG = 0
GOTO 3000

ENDIF

C Set initial eigenvector guess.
DO 1010 I = 1,N

PSIG(I) = 1.0/I
1010 CONTINUE

DO 1050 IGUESS2 =,IMAX2
C
C Compute PSI = D*PSIG
C

DO 1100 I = 1,N
PSI(I) = 0.0
DO 1200 ITER 1,N

PSI(I) = PSI(I) + D(I,ITER)*PSIG(ITER).01200 CONTINUE

1100 CONTINUE
C
C Normalize on first element. (This is valid for this problem
C as we are using a simple rod; the first element will never
C be zero.) Store the first element as a "guess" of BIOMAP2.
C BIOMAP2 = B*(I*W)**(ALPHA+2)+IOM2, where W is the frequency
C of the system.

BIOMAP2 = -1./PSI(1)

DO 1300 I =2,N
PSI(I) = PSI(1) / PSI(l)

1300 CONTINUE
PSI(l) = 1.0

C
C Check to see if the guess is within tolerance level.
C Get error vector and compute its norm.

DO 1310 I= 1,N
ERR(I) = PSIG(I) - PSI(I)

1310 CONTINUE
C Find norm of error vector -- this is the radius of the error

O 63

C sphere.
ERRNORM2 0.0
DO 1320 ITER 1,N

ERRNORM2 ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER))**2

1320 CONTINUE
ERRNORM =SQRT(ERRNORM2)

* IF (ERRNORM .LT. EPS2) GO To 3000
DO 1330 I 1,N

PSIG(I) = PSI(I)
1330 CONTINUE
1050 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON MODE',IMODE,
* 1 ' EIGENVECTOR NO.-,J,IBRANCH NO.',IBRANCH

WRITE (l0,*) 'TERMINATING PROGRAM'

GO TO 9999

C Compute new dynamical matrix for computation of next eigenvalut

*C and eigenvector.

C Normalize eigenvectors such that (PSI transposed)(M)(PSI) =1.

3000 PROD =0.0
DO 2000 IROW = 1,N

0 @ SUM =0.0
DO 2100 ICOL = 1,N

SUM =SUM + M(IROW,ICOL)*PSI(ICOL)
2100 CONTINUE

PROD = PROD + PSI(IROW)tSUM
2000 CONTINUE

PROD = CSQRT(PROD)
DO 2200 I = 1,N

PS1I) = PS1(I)/PROD
2200 CONTINUE

*C D = D + (1/BIOMAP2)CPSI)(PSI transposed)(M)
C First compute second term, then subtract it from D

DO 3100 IROW = 1,N
DO 3200 ICOL = 1,N

PPTM(IROW,ICOL) =0.0
DO 3300 ITER =1,N

* PPTM(IROW,ICOL) = PPTM(IROW,ICOL) +
1 PSI(IROW) * PSI(ITER) * M(ITER,ICOL)

3300 CONTINUE
D(IROW,ICOL) = D(IROW,ICOL) + 1./BIOMAP2

1 PPTM(IROW, ICOL)

* 64

I CNIU

3200 CONTINUE
3100 CONTINUE
1000 CONTINUE

C
C * Compute a new guess for BIOMAP2. *
C

3900 DO 4000 IGUESS3 = 1,IMAX3

C Check if this is the first iteration on this eigenvalue.

IF (IGUESSI .GT. 2 .OR. IGUESS3 .GT. 1) GOTO 3950

C Set initial eigenvector guess.

DO 15 I z 1,N
PHIG(I) = 1.0/I

15 CONTINUE

C Compute PHI = D*PHIG
C
3950 DO 4100 I = 1,N

PHI(I) = 0.0
DO 4200 ITER = 1,N

PHI(I) =PHI(I) + D(I,ITER)*PHIG(ITER)
4200 CONTINUE. 4100 CONTINUE
C
C Normalize on first element. (This is valid for this problem
C as we are using a simple rod; the first element will never
C be zero.) Store the first element as a "guess" of BIOMAP2.
C BIOMAP2 = B*(IOMEGA**2) + IOM2, where IOMEGA is i times the

C frequency of the system.

BIOMAP2 = -1./PHI(l)

DO 4300 I =2,N
PHI(I) = PHI(I) / PHI(l)

4300 CONTINUE
PHI(l) = 1.0

C
C Check to see if the guess is within tolerance level.
C Get error vector and compute its norm.

DO 4310 I= 1,N
ERR(I) = PHIG(1) - PHI(I)

4310 CONTINUE
C Find norm of error vector -- this is the radius -f the error
C sphere.

ERRNORM2 = 0.0

*65

DO 4320 ITER 1,N
ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +

AIMAG(ERR(ITER))**2
4320 CONTINUE

ERRNORM = SQRT(ERRNORM2)

write (9,*) 'errnorm for phi',errnorm

IF (ERRNORM .LT. EPS3) GO TO 4400
DO 4330 I = 1,N

PHIG(I) = PHI(I)
4330 CONTINUE
4000 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
1' EIGENVECTOR NO. ',J

C No sense computing additional eigenvalues, since they
C depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'

GO TO 9999

C Need to check if the new guesses of omega and phi are within
C tolerance.
C Get error vector and compute its norm.

* 5 4400 DO 5310 I= 1,N
ERR(I) = PHILG(I) - PHI(I)

5310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.

ERRNORM2 = 0.0
DO 5320 ITER 1,N

ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER))**2

5320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

DO 5330 I = 1,N
PHILG(I) = PHI(I)

5330 CONTINUE
20 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
1 ' EIGENVECTOR NO. ',J

C No sense computing additional eigenvalues, since they
C depend on this one. Exit program.

*66

0

write (l0,*) 'TERMINATING PROGRAM'

GO TO 9999

C Write eigenvalue and eigenvector to output file
5400 WRITE (1O,*) 'Branch No.',IBRANCH,' Eigenvalue No.',J,

I ' = ',10M2
WRITE (lO,*) 'iomega',IOMEGA
WRITE (10,*) 'imrio',imrio

PTAOP = 0.0
DO 6000 IROW =l,N

SUM = 0.0
DO 6100 ICOL = 1,N

* SUM = SUM + (KO(IROW,ICOL)+KE(IROW,ICOL))*PHI(ICOL)
6100 CONTINUE

PTAOP = PTAOP + PHI(IROW)*SUM
6000 CONTINUE

PTAQP = 0.0
* DO 6010 IROW = 1,N

SUM = 0.0
DO 6110 ICOL =1,.N

SUM = SUM + (KI(IROW,ICOL)+B*KECIROW,ICOL))*PHICICOL)
6110 CONTINUE

PTAQP =PTAQP + PHI(IROW)*SUM.06010 CONTINUE
PTMP = 0.0
DO 6300 IROW = 1,N

SUM = 0.0
DO 6400 ICOL =1,.N

* SUM =SUM + M(IROWICOL)*PHI(ICOL)
6400 CONTINUE

PTMP -PTMP + PHI(IROW)*SUM
6300 CONTINUE

Q =REAL(IQ)

* TM =REAL(2*IM)

TMQ TM + Q
TMM1 TM - 1.
IKRIOC =(((TMQ-1)*B*(IMRIO**(2*IM+IQ))+TMM1*(IMRIO**(2*IM)))*PTA'P
1 +(Q-1.)*(IMRIO**(IQ))*PTAQP-PTAOP)
1 /((TMQ*B*IMRIO**(2*IM+IQ-1)+TM*(IMRIO**(2*IM-1)))*PTMP

1 +Q(IMRIO**(IQ-1))*PTAQP)

WRITE (1O,*) 'imyioc',IMRIOC

DO 5500 I=1,N
WRITE (10,*) P111(I)

* 67

C Set PSI = PHI for first computation of new D.
PSI(I) = PHI(I)

5500 CONTINUE

C Let the first guess of iomega be the last value. Set FLAG.

FLAG = 1

11 CONTINUE
10 CONTINUE

9999 STOP
END

,0

.0

0

Appendix F. Sample Eigenstructure for Ten-by-Ten Systcm

The eigenstructure for the sample problem discussed in Chapter VI is included here for

completeness. The output is in the form that the programs printed it out, and all n(2m + q)

eigenvalues are listed.

,0

0

69

OUTPUT FOR VDRSS1
rhoe 2710.000
ae 6.2500000E-02

* le 0.9090000
e 5.5160001E+10
eO 4750000. el 1843750. b l.OOOOOOOE-03
n 10 iq 1 im 2 alpha 0.5000000
imaxl 40 imax2 140 irnax3 200
epsO l.OOOOOOOE-07 epsi 9.9999993E-04

*Branch No. 0 (i*OMEGA)**2 1 =(-2380414.,-330270.6)
iomega (-106.7766,1546.550)
imrio (26.86498,28.78374)
imrioc (26.86460,28.78333)
'1.000000,0.0000000OE+ 00)
(1.918981,-4.6963174E-07)

* (2.682489,-1.8393910E-06)
(3.228670, -3. 8353260E-06)
(3. 513276, -6. 1834844E-06)
(3. 513254,-8. 3750992E-06)
(3.228611,-9.6274507E-06)
(2.682413,-9.3926346E-06)

* (1.918911,-7.5336757E-06)
(0. 9999585, -4. 1679818E-06)
mu (8630993.,344225.4)
qranch No. 0 (i*OMEGA)**2 2 =(-8769234.,-455740.9)
Lomega (-76.92407,2962.288)
imrio (37.98923,38.98853)

* V imrioc (37.98922,38.98852)
(l.000000,0.OOOOOOOE+00)
(1. 682507, 1. 0944797E-07)
(1.830830,1. 0944797E-07)
(1. 397877, 3. 2834393E-07)
(0.5211071,5. 7460187E-07)

* (-0.5211105,7.3877385E-07)
(-1.397880,8. 7558379E-07)
(-1.830833,1 .0397558E-06)
(-1.682509,7. 6613583E-07)
(-1.000001,3. 8306791E-07)
mu (1.4748486E+07,250720.7)

*Branch No. 0 (i*OMEG;A)**2 3 (-1.9881194E+07,-584557.6)
iomega (-65.54370,4459.315)
imrio (46.87352,47.56753)
imrioc (46.87298,47.56708)
(1-000000,0-0000000E+00)
(1. 309692, 2. 1120691E-06)

* (0.7152848,6.6443340E-06)
(-0.3729208,1. 0633175E-05)
-1. 203747, 1.04 3149 2E-05)
-1. 203667, 4. 1905241E-06)
(-0.3727068, -6. 0308817E-06)
(0.7155645,-1. 5249475E-05)

07

(1. 309949,-1.7960991E-05)
(1.000152,-1.2022547E-05)

mu (2.0617300E+07,-44966.94)
*Branch No. 0 (i*OMEGA)**2 4 =(-3.6620676E+07,-734676.0)

iomega (-60.69946,6051.806)
imrio (54.73304,55.28476)
imrioc (54.73180,55.28397)
(1.000000,0-0000000E+00)
(0. 8307522, 1.6252874E-05)

* (-0.3098879,3.5149289E-05)
(-1.088272,2.4561141E-05)
(-0.5942521, -2. 0840604E-05)
(0. 5946429, -6.1570696E-05)
(1.088393,-5.0r7,3399E-05)
(0. 3096554,1. 3819139E-05)

* (-0.8311772,7.3235838E-05)
(-1.000324,6.8564186E-05)
mu (4. 2753184E+07,-1.9644188E- 07)
Branch No. 0 (i*OMEGA)**2 5 (-6.0250020E+07,-924936.5)
iomega (-59.57861,7762.316)
imrio (62.06032,62.53848)

* imrioc (62.05998,62.53775)
(1.000000,0. OOOOOOOE+00)
(0.2845821,-1.7432709E-05)
(-0.9190395,-i1.9537525E-05)
(-0.5461531,1. 7321930E-05)
(0.7636402,4.3647233E-05)

* (0.7635363,5.6598396E-06)
(-0.5463436,-5.2509618E-05)
(-0.9190938, -3 .9639021E-05)
(0. 2847274, 3. 5791942E-05)
(1.000175,6. 4373125E-,5)
mu (6.5554212E+07,-5932777.)

*Branch No. 0 (i*OMEGA)**2 6 (-9.2262792E+07,-1174482.)
iomega (-61.13672,9605.546)
irnrio (69.08185,69.52293)
imrioc (69.08194,69.52074)
(1.000000,0. OOOOOOOE+00)
(-0.2847293,-1.0817482E-04)

* (-0.9189860,7.0201601E-08)
(0.5463914,2.0737553E-04)
(0.7635213,-4.6801066E-08)
(-0.7637883,-2.8993262E-04)
(-0.5462006,3. 5100800E-08)
(0.9193074,3. 4864456E-04)

* (0. 2846298, -5. 2651203E-08)
(-1.000350,-3.7939285E-04)
mu (1.0224027E+08,-5.3946252E+07)
Branch No. 0 (i*OMEGA)**2 7 (-1.3377890E+08,-1480091.)
iomega (-63.98242,11566.46)
imrio (75.83751,76.25818)

71

imrioc (75.83728,76.25863)
(1.000000,0.0000000E+00)
-0.8308192,3.1516585E-05)
(-0.3097337,-3.5127923E-05)
(1.088145,-3.1303196E-05)
(-0.5943240,7.8435820E-05)
(-0.5943553,-9.8959827E-06)

(1.088124,-9.4306735E-05)
(-0.3096964,7.1078292E-05)

(-0.8308083,6.4218679E-05)
(0.9999602,-I.1546796E-04)
mu (1.4529238E+08,51596.13)
Branch No. 0 (i*OMEGA)**2 8 (-1.8406491E+08,-1867021.)
iomega (-68.80859,13567.23)
imrio (82.15410,82.57182)
imrioc (82.15426,82.57207)
1.000000,0.OOOOOOOE+00)
(-1.309705,4.0994073E-06)
(0.715330,-9.3700746E-06
(0.3728082,9.1626634E-06)
(-1.203591,-4.8802468E-07)
(1.203552,-i.0199717E-05)
(-0.3727369,1.2444630E-05)
(-0.7153528,-3.6601853E-06)
(1.309645,-7.3203705E-06)
(-0.9999297,8.7844446E-o6)
mu (2.2543661E+08,-1.0230355E+07)
Branch No. 0 (i*OMEGA)**2 9 = (-2.3761042E+08,-2284970.)
iomega (-74.11768,15414.79)
imrio (87.58098,88.00310)
imrioc (87.58107,88.00335)
(1.000000,0.OOOOOOOE+00)
(-1.682495,5.6159638E-06)
(1.830793,-1.7751610E-05)
(-1.397818,2.7757062E-05)
(0.5210506,-2.6982447E-05)
(0.5211318,1.0650966E-05)
(-1.397843,1.6589685E-05)
(1.830745,-4.0538220E-05)
(-1.682407,4.7638863E-05)
(0.9999328,-3.1791518E-05)
mu (2.666%758E+08, 2.2426160E+07)
Branch No. 0 (i*OMEGA)**2 10 = (-2.8153338E+08,-2638136.)
iomega (78.61523,16779.14)
imrio (91.38028,91.80943)
imrioc (91.38062,91.80936)
(1.000000,0.OOOOOOOE+00)
(-1.918977,-1.2857653E-05)
(2.682472,4.5136654E-05)
(-3.228632,-9.6926924E-05)
(3.513214,1.5842787E-04)

*72

(-3.513170, -2.1399450E-04)
3'. 2'28516, 2. 4510463E-04)
(-2.682320,-2. 3890058E-04)

* c(1.918837,1,9061095E-04)
(-0.9999172,-1.0581333E-04)
Branch No. 1 (i*OMEGA)**2 1 =(-1727935.,-313830.9)
iomega (118.8868,-1319.875)
imrio (-26.87104,F24.55943)
imrioc (-26.87065,24.55910)

* (l.O00000,0.0000000E+00)
(1.918982, -5.8519146E-07)
(2.682493, -2. 1735682E-06)
(3. 228678, -4 .6815317E-06)
(3. 513289,-7.5238904E-06)
(3.513272, -1.0115453E-05)

* (3.228634,-1.1620231E-05)
(2.682436,-1. 1411234E-05)
(1 .918929,-9.0704680E-06)
(0.9999686,-5.0368267E-06)
mu (7951729.,327181.6)
Branch No. 1 (i*OMEGA)**2 2 =(-7811573.,-500747.8)

* iomega (89.53687,-2796.353)
imrio (-37.99554,36.79843)
imrioc (-37.99553,36.79842)
(1. 000000,0. OOOOOOOE+00)
(1.682507,8. 6335419E-08)

___ (1. 830829, 8. 6335419E-08)
* U (1.397876,5.1801248E-07)

(0.5211055,1. 0791928E-06)
(-0 .5211135, 1. 7698760E-06)
(-1.397884,2. 3742239E-06)
(-1.830836, 2.5037270E-06)
(-1.682512,2. 0720499E-06)

* (-1.000003,1.2518635E-06)
mu (1.4309340E+07,173221.7)
Branch No. 1 (i*OMEGA)**2 3 =(-1.8618120E+07,-681858.1)
iomega (79.00098,-4315.595,
imr 10 (-46.87920,46.02889)
imnrioc (-46.87971,46.02890)

* (1.000000,0.OOOOOOOE+00)
(1. 309736,1. 4812716E-05)
(0. 7154124, 4.4238837E-05)
-0.3727181,7. 0220878E-05)
(-1.203550,6 .838722BE-05)
(-1.203589,2. 7074264E-05)

* (-0.3728245,-4.0890427E-05)
(0.7152732,-1. 0104217E-04)
(1.309607,-1.1878873E-04)
(0.9999237,-7.9444944E-05)
mu (2.0918084E+07,-291307.8)
Branch No. 1 (i*GMEGA)**2 4 =(-3.5003448E+07,-895241.5)

73

iomega (75.65332,-5916.855)
imrio (-54.74026,54.04482)
imrioc (-54.73922,54.04443)

* (l.000000,O.0000000E+00)
(0.8307768,-2.4223091E-05)
(-0.3098356,-5.1601903E-05)
(-1 .088236,-3.5794073E-05)
(-0.5942835,3. 0739073E-05)
(0. 5945513,9 .0317939E-05)

* (1.088319,7.3224444E-05)
(0.3096766,-2.0351486E-05)
(-0.8310684,-1. 0741143E-04)
(-1 .000223,-i1.0039872E-04)
mu (3.7189392E+071-7475835.)
Branch No. 1 (i*OMEGA)**2 5 =(-5.8185504E+07,-1163387.)

* iomega (76 .25464,-7628.323)
imrio (-62.06834,61.45099)
imrioc (-62.06834,61.45099)
(1.000000,0. 0000000E+00)
(0.2846289,5. 6180619E-07)
(-0.9189868, 5.7375951E-07)

* (-0.5461997,-5.7375951E-07)
(0.7635232,-1.3865855E-06)
(0.7635217,-1. 6734653E-07)
(-0.5462028,1.6854185E-06)
(-0.9189881,1. 2431456E-06)
(0. 2846313,-1.135565eE-06)

* W (1.000003,-2.0320649E-06)
mu (8-2082576E+07,1550685.)
Branch No. 1 (i*OMEGA)**2 6 =(-8.9616080E+07,-1516512.)
iomega (80.09766,-9466.916)
imrio (-69.09180,68.50970)
imrioc (-69.09160,68.50941)

* (l.000000,0.OOOOOOOE+00)
(-0. 2846528,4. 2039628E-06)
(-0.9189866,9. 3892947E-09)
(0.5462448,-8.0543250E-06)
(0.7635218,-i. 5398443E-08)
-0 .7635833, 1. 1241990E-05)

* (-0.5462007,1.4083942E-08)
(0.9190604,-1.3511946E-05)
(0.2846300,-9.2015089E-09)
(-1 .000081,1.4693870E-05)
mu (1.0609301E+08,--86016.)
Branch No. 1 (i*OMEL;A)**2 7 (-1.3038785E+08,-1979836.)

* iomega (86.69287,-11419.08)
imrio (-75.84887,75.27522)
imrioc (-75.84859,75.27493)
(1.000000,0. OOOOOOOE+00)
(-0.8308573,2. 5904540E-06)
(-0.309691J, -2.8543868E-06)

74

(1.088182, -2. 5619736E-06)
(-0.5944169,6.3123384E-06)
(-0.5943430,-7.6089776E-07)

* (1.C88234,-7.5307648E-06)
(-0. 3C97799, 5. 6i30239E-06)
(-0.8308829, 5.1012153E-06)
(1.000095, -9. 1055272E-06)
mu (1.5576734E+08,2273627.)
Branch No. 1 (i*OMEGA)**2 8 (-1.7975037E+08,-2559928.)

* iomega (95.47070,-13407.44)
imrio (-82.16828,81.58527)
imrioc (-82.16757,81.58463)
(1.000000,0.OOOOOOOE+00)
(-1.309778,-1. 6930754E-06)
(0.7154927, 3.6269312E-06)

* (0.3727002,-2.5296204E-06)
(-1.203688, -2.1632156E-06)
(1.203830,6. 3649736E-06)
(-0. 3729604, -5.1696379E-06)
(-0.7154179,-1. 4370679E-06)
(1. 309977.-7.5793437E-06)

* (-1.000239,-7.0787491E-06)
mu (1.8128869E+08,2374305.)
Branch No. 1 (i*OMEGA)**2 9 =(-2.3227365E+08,-3201124.)
iomega (105.0234,-15240.89)
imrio (-87.59644,86.99490)
imrioc (-87.59653,86.99477)

* W (l.000000,0.OOOOOOOE+00)
(-1 .682509,1.0381686E-05)
(1.830836,-2.9456172E-05)
(-1.397889,4. 5897981E-05)
(0.5211259,-4.4134587E-05)
(0. 5210884,1.7547038E-05)

* (-1.397858,2.4339839E-05)
(1.830815,-6.1097962E-05)
(-1.682497,7. 1529321E-05)
(0.9999952, -4. 7711052E-05)
mu (2.7546778E+08,3563502.)
Branch No. 1 (i*OMEGA)**2 10 =(-2.7534032. 3749408.)

* iomega (112.9785,-16593.77)
imrio (-91.39783,90.77767)
imrioc (-91.39783,90.77767)
1. 000000,0.-0000000E+00)
(-1.918984,0. OOOOOOOE400)
(2.682505,-1.7627285E-07)

* (-3.228705,3.5254570E-07)
(3.513334,-1.7627285E-07)
(-3.513334,1. 7627285E-07)
(3.228705,-3.5254570E-07)
(-2.682505,-8.8136424E-08)
(1.918984,-8.8136424E-08)

0 75

(-0.9999995,8. 8136424E-08)
Branch No. 2 (i*OMEGA)**2 1 =(-1727934.,313829.3)
ioimega (118.8856,1319,875)
imrio (-26.87102,-24.55944)
imzioc (-26.87064,-24.55910)
(1. 000000, 0. 000000E+00)
(1.918982,4.8069217E-07)
(2.682494,1. 7973708E-06)
(3. 228679,4.1799321E-06)
3. 513290, 6. 7714900E-06)
(3.513273,9.1122520E-06)
(3.228635,1. 0533428E-05)
(2.682437, 1.0115436E-05)
(1. 9189 30, 8. 109068 4E-06)
(0. '999689, 4.5143265E-06)
mu (7951728.,-327181.5)
Branch No. 2 (i*OHEGA)**2 2 (-7811571.,500747.9)
iomega (89.53564,2796.353)
irnrio (-37.99554,-36.79844)
imrioc (-37.99553,-36.79843)
(1.000000,0. OOOOOOOE+00)

* (1.682507,-8.6335611E-08)
(1.830830,-1.7267122E-07)
(1.397876, -4. 7484585E-07)
(0.5211055,-i1.1439469E-06)
(-0.5211133,-i .7698800E-06)

___ (-1.397884, -2. 2015581E-06)
* W (-1.830836,-2.5037327E-06)

(-1.682512,-1.9857191E-06)
(-1.000003,-1. 2086986E-06)
mu (1.4309341E+07,-173222.6)
Branch No. 2 (itOMEGA)**2 3 (-1.8618124E+07,681858.1)
iomega (78.99731,4315.595)

* imrio (-46.87918,-46.02891)
imrioc (-46.87973,-46.02890)
(1.000000,0 .0000000E+00)
(1.309736,-1.4541678E-05)
(0.7154123,-4.4214990E-05)
(-0.3727185, -7. 0240931E-05)

* (-1.203551,-6.8690293E-05)
(-1.203590, -2. 7265645E-05)
(-0.3728243,4.0643350E-05)
(0. 7152737, 1. 0113801E-04)
(1,309608,1. 1902810E-04)
(0.9999242,7 .9644386E-05)

* mu (2.0918078E+07,291304.7)
Branch No. 2 (i*OMEGA)**2 4 (-3.5003444E+07,895240.0)
iomega (75.64917,5916.854)
imrio (-54.74024,-54.04484)
imrioc (-54.73922,-54.04443)
(1.000000,0. OOOOOOOE+00)

* 76

(0.8307768, 2.4077115E-05)
(-0.3098354,5 .1543728E-05)

-1. 088235, 3. 6144 895SE-05)
* (-0.5942833,-3.0388594E-05)

(0.5945511,-9.0522946E-05)
(1.088319,-7. 3604679E-05)
(0. 3096764,2 .0453861E-05)
(-0.8310683,1 .0761653E-04)
(-1 .000223,1.0048690E-04)

* mu (3.7189316E+071?7475811.)
Branch No. 2 (i*OMEGA)**2 5 =(-5.8185508E+07,1163387.)
iomega (76.25220,7628.323)
imrio (-62.06833,-61.45100)
imrioc (-62.06834,-61.45098)
(1.000000,0. OOOOOOOE+00)

* (0.2846288,-5.6155409E-07)
(-0.9189869,-5.9739796E-07)
(-0.5461996,5.257101.6E-07)
(0.7635231,1. 4098591E-06)
(0.7635214,1. 6727142E-07)
(-0. 5462027,-1.6488183E-06)

* (-0.9189876,-1.2425877E-06)
(0.2846313,1.1350561E-06)
1. 000003, 2. 0789448E-06)

mu (8.2082536E+07,-1550466.)
Branch No. 2 (i*OMEGA)**2 6 =(-8.9616080E+07,1516513.)
iomega (80.09375,9466.916)

* imrio (-69.09178,-68.50971)
imrioc (-69.09158,-68.50941)
(1.000000,0. OOOOOOOE+00)
(-0.2846528,-4.1972467E-06)
(-0.9189857,-5.6336358E-09)
(0. 5462447,8.0410764E-06)

* (0.7635210,1.0516120E-08)
(-0.7635829,-i. 1221076E-05)
(-0.5462001,-1.2206211E-08)
(0.9190602,1. 3489178E-05)
(0.2846290, 7.9809839E-09)
(-1.000081,-1. 4666983E-05)

* mu (1.0609292E+08,-1785577.)
Branch No. 2 Hi OMEGA)**2 7 (-1.3038786E+08,1979838.)
iomega (86.68945,11419.08)
imrio (-75.84885,-75.27522,
imrioc (-75.84859,-75.27491)
(1.000000,0. OOOOOOOE+00)

* (-0.8308578,-2.5664494E-06)
(-0.3096915,2. 8234983E-06)
(1.088183, 2.5298611E-06)
(-0.5944177, -6. 2406507E-06)
(-0.5943429,7. 4710334E-07)
(1.088235,7. 4499058E-06)

5 77

(-0.3097804, -5.5536079E-06)
(-0. 8308839,-5.0377544E-06)0 (1.000096,9.0010326E-06)

* mu (1.5576696E+08,-2271861.)
Branch No. 2 (i*OMEGA)**2 8 (-1.7973891E+08,2559314.)
iomega (95.44336,1340'1.01)
imrio (-82.16689,-81.58404)
imrioc (-82.16759,-81.58463)
(1.000000, 0.0000000E+00)

* (-1.309667,-2.9475502E-06)
(0.7152544,6.2877903E-06)
(0. 3728666, -4. 3809155E-06)
(-1 .203547,-3.7253233E-06)
(1. 203413,1. 1025740E-05)
(-0.3726203,-8.9557989E-06)

* (-0.7153248,-2.4854505E-06)
(1. 3094 9,1.3128959E-05)
(-0.9997736,-1.2258956E-05)
mu (1.8128790E+08,-2370810.)
Branch No. 2 (i*OMEGA)**2 9 =(-2.3227318E+08,3202567.)
iomega (105.0605,15240.87)

* imrio (-87.59650,-86.99475)
imrioc (-87.59652,-86.99474)
(1. 000000,0. OOOOOOOE+00)
(-1 .682505,4.0948004E-07)
(1.830825,-i. 0237001E-06)
(-1.397870,2. 2521401E-06)

* (0.5211027, -2. 9175453E-06)
(0. 521109 2, 3.08 38964E-06)
(-1.397870,-2.6616203E-06)
(1. 830817,2.0474001E-06)
(-1.682492,-i. 0237001E-06)
(0.9999904,3. 3270254E-07)

* mu (2.7546762E+08,-3569768.)
Branch No. 2 (i*OMEGA)**2 10 (-2.7534032E+08, 3749409.)
iomega (112.9727,16593.77)
imrio (-91.39782,-90.77769)
imyioc (-91.39783,-90.77768)
(1.000000,0. OOOOOOOE+00)

* (-1.918986,1. 6818530E-07)
(2.682508,-3.3637059E-07)
(-3.228708,0. OOOOOOOE+ 00)
(3. 513338,-5.0455589E-07)
(-3.513337,5. 0455589E-07)
(3.228707, -3. 3637059E-07)

* (-2. 682507, -8. 4092648E-08)
(1.918986,-1.6818530E-07)
(-1.000000,4. 2046324E-08)
Branch No. 3 (i*OMEGA)**2 1 (-2380412.,330272.2)
iomega (-106.7770,-1546.549)
imrio (26.86497,-28.78374)

* 78

imrioc (26.86459,-28.78333)
(1.000000,0. 0000000E+00)
(1.9 18982,5.0876679E-07)

* (2.682489,2.0742032E-06)
(3.228670,4. 3049499E-06)
(3.513276,7. 0835990E-06)
(3.513254,9.5491614E-06)
(3. 228611,1.0958054E-05)
(2.682414,1. 0762375E-05)

* (1-918912,8.5316278E-06)
(0.9999588,4 .7354447E-06)
mu (8630993.,-344225.3)
Branch No. 3 (i*OMEGA)**2 2 =(-8769234.,455740.9)
iomega (-76.92480,-2962.289)
imrio (37.98922,-38.98854)

* imrioc (37.98923,-38.98853)
(1.000000,0. OOOOOOOE+00)
(1.682507,-5. 4724012E-08)
(1.830830,-1. 6417204E-07)
(1. 397877,-3.2834407E-07)
(0.5211071,-5.4724012E-07)

* (-0.5211105,-7.9349820E-07)
(-1.397880,-8.7558419E-07)
(-1.830833,-i1.0397563E-06)
(-1.682509, -8. 2086018E-07)
(-1.000001,-6.0196413E-07)
mu (1.4748488E+07,-250720.2)

* Branch No. 3 (i*OMEGA)**2 3 (-1.988106E+07,58.559.2)
iomega (-65.54541,-4459.316)
imrio (46.87351,-47.56755)
imrioc (46.87297,-47.56709)
(1.000000,0. OOOOOOOE+00)
(1.309693, -2. 0784639E-06)

* (0.7152843,-6.6387597E-06)
(-0.3729225,-1. 0470752E-05)
(-1.203749,-1.0173829E-05)
(-1.203668, -3.9776533E-06)
(-0. 3727070,6.1933742E-06)
(0.7155666,1. 5095475E-05)

* (1.309952,1.7776189E-05)
(1.000154,1 .1893744E-05)
mu (2.0617300E+07,44967.56)
Branch No. 3 (i*OMEGA)**2 4 (-3.6620688E+07,734676.0)
iomega (-60.69604,-6051.807)
irnrio (54.73306,-55.28475)

* imrioc (54.73180,-55.2V^!97)
(1.000000,0. OOOOOOOE+00)
(0.830 ,i523,- 1.6280941Z~-05)
(-0.3098881, -3. 5177462E-05)
(-1.088272, -2. 4729126E-05)
-0. 5942523, 2. 0533007E-05)

0 79

(0. 5946431,6.1738894E-05)
(1.088393,5. 0521270E-05)
O0.3096555,-1.3707321E-05)

* (-0.8311775,-7.3683848E-05)
(-1.000325, -6. 8900270E-05)
mu (4.2753092E+07,1.9644208E+07)
Branch No. 3 (i*OMEGA)**2 5 (-6.0250036E+07,924952.8)
iomega (-59.58057,-7762.318)
imrio (62.06032,-62.53850)

* imrioc (62.05998,-62.53775)
C1.000000,0.OOOOOOOE+00)
(0.2845813,1. 7937400E-05)
(-0.9190400, 2.0275309E-05)
(-0.5461520,-1. 7735856E-05)
(0 .7636414, -4. 4682267E-05)

* (0.7635363,-5.7439988E-06)
(-0. 5463451, 5.3832355E-05)
(-0.9190950,4. 0550618E-05)
(0. 2847284,-3.6650745E-05)
(1.000177, -6. 5904831E-05)
mu (6.5548396E+07,5934552.)

*Branch No. 3 Ci*OMEGA)* 2 6 (-9.2263024Ei07,1174750.)
iomega (-61.15039,-9605.560)
imrio (69.08185,-69.52303)
imrioc (69.08195,-69.52075)
(1.000000,0. OOOOOOOE+00)

___ (-0.2847335,1.1281406E-04)
* V (-0.9189858,-4.6849692E-08)

(0. 5463995,-2 .1665639E-04)
(0.7635210,-4.6849692E-08)
(-0.7637995, 3.0271927E-04)
(-0.5462003,-5. 8562115E-08)
(0.9193211,-3.6411581E-04)

* (0.2846296,-5.8562115E-09)
(-1 .000365,3.9641865E-04)
mu (1.0219393E+08,5.3960408.+07)
Branch No. 3 (i*OMEGA)**2 7 (-1.3378158E+08,1480224.)
iomega (-63.98242,-11566.57)
imrio (75.83788,-76.25855)

* imrioc (75.83728,-76.25863)
(1.000000,0.0000000E+00)
(-0.8308539, -3.0083331E-05)
-0 .30969 41, 3. 3471013E-05)
(1. 088179, 2. 9818808E-05)
(-0.5944111, -7.4787495E-05)

* (-0.5943434,9.1861166E-06)
(1.088228,9.0141773E-05)
(-0.3097761, -6 .7681482E-05)
(-0.8308793,-6.1308914E-05)
(1.000089,1. 1015525E-04)
mu (1.4517026E+08,1099228.)

08

Branch No. 3 (i*OMEGA)**2 8 =(-1.8406677E+08,1869110.)
iomega (-68.87793,-13567.29)
imrio (82.15410,-82.57224)

* imrioc (82.15426,-82.57206)
(1.000000,O.OOOOOOOE+00)
(-1.309723,1. 5334019E-05)
(0.7153719, -3.2981487E-05)
(0. 3727844, 2. 4261562E-05)
(-1.203616, 1.6757680E-05)

* (1.203618,-5.4484706E-05)
(-0. 3727874,4 .6046545E-05)
(-0.7153703,9 .4020970E-06)
(1.309723,-6.2225867E-05)
(-1 .000001,5.8844667E-05)
mu (2.2444466E+08,4.9398466E+07)

*0 Branch No. 3 (i*OMEGA)**2 9 =(-2.3761622E+08,2288260.)
iomega (-74.21582,-15414.98)
imrio (87.58124,-88.00391)
imrioc (87.58106,-88.00334)
(1. 000000,0. OOOOOOOE+00)
(-1.682535, 1.6905027E-05)

* (1.830914,-5.0646915E-05)
(-1 .398011,7.9685386E-05)
(0. 5212390,-7.7606339E-05)
(0.5210567, 3.0418823E-05)
(-1.397954,4. 6352492E-05)
(1.831022,-1.1479059E-04)

* (-1.682733,1. 3503572E-04)
(1.000151,-9.0148780E-05)
mu (2.6468098E+08,4.0762000E+o7)
Branch No. 3 (i*OMEGA)**2 10 =(-2.8153389E+08,2631452.)

iomega (-78.41504,-16779.15)
imrio (91.38085,-91.80891)

* imrioc (91.38062,-91.80937)
(1.000000,0. OOOOOOOE+00)
(-1.918978, -2. 3632456E-05)
(2.682482,8.4262319E-05)
(-3.228652,-i. 8137335E-04)
3. 513247, 2. 9666763E-04)

* (-3.513915,-4.0003093E-04)
(3.228567,4. 5876790E-04)
(-2.682370, -4. 4752529E-04)
(1.918876,3.5741221E-04)
(-0.9999390,-i1.9849541E-04)

* 81

OUTPUT FOR NONZEROB
epsO 9.9999997E-05 epsi 0.1000000
eps2 0.1000000 eps3 0.1000000

*rhoe 2710.000 rhov 1.000000
ae 6.2500000E-02
le 0.9090000
e 5.5160001E+10
eQ 4750000. el 1843750. b 1.0000000E-03
n lu iq 1 im 2 alpha 0.5000000

*irnaxi 40 imax2 140 imax3 200
Branch No. 0 iomega**2 No. 1 =(9.9995052E+11,349673.8)
iomega (999975.3,0.1748412)
irnrio (-999.9876,-8.7421693E-05)
imrioc (-999.9875,-4.7891485E-10)
(1.000000,0. OOOOOOOE+00)

* (1.828169,1.4601265E-07)
(2.368327,4 .8209864E-07)
(2.587787,9.2231738E-07)
(2.51&7601,1.3094324E-06)
(2.267370,1. 5085000E-06)
(1.887427,1. 4690710E-06)

* (1.446003,1.2263185E-06)
0. 9755177,8 .5809 245E-07)
(0.4909331,4. 3601196E-07)
Branch No. 0 iomega**2 No. 2 =(9.9994803E+11,149672.9)
iomega (999974.0,0.1748410)
irnrio (-999.9870,-8.7421642E-05)

* ~ imrioc (-999.9870,-1.0713969E-10)
(1.000000,0. OOOOOOOE+00)
(1.515036,2 .8566211E-07)
(1.336279,7.9574676E-07)
(0.6139306, 1.1520580E-06)
(-0.2827702,1. 0117719E-06)

* (-0.9943206,3.6644997E-07)
(-1.328689, -4. 6404875E-07)
(-1. 282883,-1.0658343E-06)
(-0.9670860,-1.1677936E-06)
(-0.5094714,-7.4615866E-07)
Branch No. 0 iomega**2 No. 3 -(9.9994488E+11,349671.8)

* iomega (999972.4,0.1748407)
irnrio (-999.9862,-8.7421569E-05)
irnrioc (-999.9865,5.7382971E-10)
(1.000000,0. OOOOOOOE+00)
(1. 107533, 4.2891546E-07)
(0. 2390907,9. 44 324 20E-07)

* (-0.8652738,8.4621962E-07)
(-1.340219,3. 7002444E-08)
(-0.6690234, -8.2836880E-07)
(0.1927339,-1. 0929781E-06)
(1.165972, -7. 2575108E-07)
(1. 494040,-1.9971225E-07)

* 82

(1.015863, 5.2901523E-08)
Branch No. 0 iomega**2 No. 4 =(9.9993826E+11,349669.5)
iomega (999969.1,0.1748402)

* imxio (-999.9846,-8.7421424E-05)
imrioc (-959.9847,0.OOOOOOOE+00)
(1.,000000,0.0000000E+00)
(0. 6183243, 3.43104 46E-07)
(-0.5682581,3. 5707581E-07)
(-0.9656028, -2. 8586317E-07)

* (-0.1499314,-7.0491149E-07)
(0.7980464,-2.4417554E-07)
(0.8046404,4. 7162501E-07)
-4 .299 029 7E-02, 5.38 24 533E-07)
(-0.8137011,3. 2590012E-08)
(-0.7720997,-2.5448307E-07)

*Branch No. 0 iomega**2 No. 5 (9.9993164E+11,349667.2)
iomega (999965.8,0.1748396)
imrio (-999.9829,-8.7421286E-05)
imrioc (-999,9831,3.4177686E-10)
(1.000000,0. OOOOOOOE+00)
(5.6983080E-02, 3.7243248E-07)

* (-1.029749,1.0823873E-07)
(-0. 2105127,-5.8872979E-07)
(1.038220, -3. 2288793E-07)
(0. 5065960, 5. 2806308E-07)
(-0.9208584, 5.3225568E-07)
(-0.8921357, -1.5920646E-07)

* U (0.5672449,-4.5800851E-07)
(1.183969, -2.4459450E-07)
Branch No. 0 iomega**2 No. 6 =(9.9992011E+11,349663.2)
iomega (999960.1,0.1748386)
imrio (-999.9800,-8.7421031E-05)
imrioc (-999.9807,4.6639959E-10)

9 (1.000000,0.OOOOOOOE+00)
(-0.4683411,2.5848396E-07)
(-0.7823696, -2. 2529204E-07)
(0.7759746,-2.9482896E-07)
(0.4966423,4. 0715923E-07)
-0 .9131734, 1.84 24829E-07)

* (-0.2615826,-4.0477300E-07)
(0.9499763,-6.2990537E-08)
(0.1055817,2. 4263247E-07)
(-0.9506435,-8.7379393E-09)
Branch No. 0 iomega**2 No. 7 =(9.9990752E+11,349658.8)
iomega (999953.8,0.1748375)

* imrio (-999.9769,-8.7420754E-05)
imrioc (-999.9769,5.2259147E-10)
(1.000000,0. OOOOOOOE+00)
(-1.011854,2.3266050E-07)
(-2.2162143E-02,-3.9487853E-07)
(1.064521,8.2989544E-08)

* 83

(-0.9396884,4 .2366506E-07)
(-0.3040805,-4.1149025E-07)0 (1.222867,-1.4429263E-07)

* (-0.6190788,4.1436226E-07)
(-0.8099154, -2. 5513055E-08)
(1.200566, -2. 9474484E-07)
Branch No. 0 iomega**2 No. 8 =(9.9989186E+11,349653.3)
iomega (999945.9,0.1748361)
imrio (-999.9730,-8.7 420412E-05)

* imrioc (-999.9731,-8.9928703E-11)
(1.000000,0. OOOOOOOE+00)
(-1.435261, 1.3215839E-07)
(1.029387, -3. 4303750E-07)
(1.7084423E-02, 4.1054108E-07)
(-1.067521,-i1.8328214E--07)

* (1.398843,-1.979oC71E-07)
(-0.7235447, 3.9354S70E-07)
(-0.5042318, -2. 3244714E-07)
(1.350638, -7. 5578029E-08)
(-1.129440,1 .7850256E-07)
Branch Nc. 0 iomega**2 No. 9 (9.99875~48E+11,349647.6)

* iomega (99M~7.8,0.1748347)
imrio (-999.9689,-8.7420056E-05)
imrioc (-999.9688,2.0144153E-10)
(1. 000000,0. OOOOOOOE+00)
(-1 .795254,1.1206640E-07)
(2.182214,-3. 5237954E-07i)

* (-2.000948,6.0828222E-07)
(1.2207071-7.0113902E-07)
(-1.8065292E-02, 5. 1479378E-07)
(-1.225691, -9. 9155407E-08)
(2.045312, -3. 3606989E-07)
(-2.091733,5.4383224E-07)

* (1.311292,-4.0101364E-07)
Branch No. 0 iomega**2 No. 10 =(9.9986250E+11,349643.0)

iomega (999931.3,0.1748335)
imrio (-999.9656,-8.7419772E-05)
imrioc (-999.9655,1.2488019E-10)
(1.000000,0. OOOOOOOE+00)

* (-2.007572,6.4654699E-08)
(3.005106,-2.3995383E-07)
-3 .928 426, 5. 3225557E-07)
(4.667979,-8.9773010E-07)
-5. 087037,1. 25209 31E-06)
(5.053510,-1. 4845094E-06)

* (-4.481068,1.4920497E-06)
(3.366284,-1. 2198240E-06)
(-1.808235,6.8745641E-07)

* 84

Vita

Captain Michele Lynn Devereaux

She graduated from Vacaville High School in Vacaville, California in June, 1979. She attended the

Massachusetts Institute of Technology on a four-year Air Force Reserve Officer Training Corps

scholarship. Upon graduation in May 1983, she was commissioned a second lieutenant in the

United States Air Force. Captain Devereaux's first assignment on active duty was to Palmdale

Plant 42. She supported the test and checkout of the fourth shuttle orbiter, OV-104 Atlantis, and

the modification of the original orbiter, OV-102 Columbia. When Atlantis was completed, she was

transferred to Vandenberg AFB. As part of the 6595th Shuttle Test Group, she helped prepare

the facilities for a Shuttle launch. In May, 1987 she was assigned to the Air Force Institute of

Technology, Wrighk.. Patterson Air Force Base, Ohio.

.- U l.

0
85

* , nla si fed
SECURITY CLASSIFICATION OF THIS PAGE

ROIForm Approved
REPORT DOCUMENTATION PAGE OM No. 0704-0188

W RT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUn class i fi e d
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public _2elease;
2b DECLASSIFICATION / DOWNRADING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA88D-08

6a. NAMc OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of "ngineering AFIT/EY
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology . IN
Wright-Patterson AFB OH 45433-6P83

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT J1TO-NUMBER
ORGANIZATION (If applicable) , , -,

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (iclude Security Classification)
IFYPROV7D SLUT7ION TECHNTQU7 FOR THE EITSTRUCThRE OF FRACTIO" AL ORDER
SYSTEMS

1q RSONAL AUTHOR(S)
.ichele Lynn Devereaux, B.S., Captain, USAF

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 115. PAGE IC(,UNT
MS Thesis FROM TO _ 1988 December 96

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Viscoelasticity ,Numerical Methods,
10 11 Damning1. 1"3

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Ronald H. Bagley, LtCol, USAF
Associate Professor
Department of Aeronautics and Astronautics

The structural problem of a viscoelastically damped rod is considered. A four
parameter fractional derivative viscoelastic model rather than the traditional
viscous model is used to describe the stress-strain relationship. The introduction
of fractional order derivatives leads to high order matrix equations, which are
cumbersome and time consuming to solve. Thus, there exists a motivation to seek
alternate solution techniques. An existing technique, modified matrix iteration,
is presented, and a new one, employing spectrum shift concepts, is proposed. The
spectrum shift technique is shown to be significantly more efficient.

tSTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. [DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Ronald H. Paglev. LtCol. TqA? (513) 255-3517 1 ENy

00 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

